

    
      Navigation

      
        	
          index

        	angus 5.0 documentation 
 
      

    


    
      
          
            
  
  
Next-Gen Sequence Analysis Workshop (2013)


Warning

These documents are not maintained and their instructions may be
out of date. However the GED Lab does maintain the khmer protocols [http://khmer-protocols.readthedocs.org/] which may cover similar
topics. See also the installation instructions for the current version
of the khmer project [https://khmer.readthedocs.org/en/latest/install.html].



This is the schedule for the 2013 MSU NGS course [http://bioinformatics.msu.edu/ngs-summer-course-2013], which ran from June 10th to June 20th, 2013.  If you’re interested in this course in 2014, please see the 2014 announcement [http://bioinformatics.msu.edu/ngs-summer-course-2014].







	Day
	Schedule




	Monday 6/10
	
	1:30pm tutorial: Day 1 - Getting started with Amazon (Adina)

	7pm: research presentations






	Tuesday 6/11
	
	Day 2 – Running BLAST and other things at the command line

	9:30am: lecture, Welcome! (Titus)

	10:45am: tutorial, Running command-line BLAST

	1:15pm: tutorial, Evaluating the quality of your short reads, and trimming them

	Evening: firepit social






	Wednesday 6/12
	
	Day 3 – Mapping

	9:30am: lecture, Mapping. (Titus)

	10:45am: tutorial, Mapping reads with bwa and bowtie (Likit)

	1:15pm: tutorial cont’d; also, Plotting the distribution of mapping mismatches

	8pm: General bioinformatics overview (Istvan)






	Thursday 6/13
	
	9:15am: lecture, Assembly. (Titus)

	10:45am: tutorial, Assembling E. coli sequences with Velvet

	1:15pm: tutorial, cont’d, evaluating assemblies.

	Evening: brew pub in Kalamazoo.






	Friday 6/14
	
	9:15am: lecture, Intervals (Istvan)

	10:45am: tutorial, Interval Analysis Tutorial (Istvan)

	1:15pm: lecture/tutorial, Statistics (Ian)

	8 Tutorial: Teach me interval based analysis (Istvan)






	Saturday 6/15
	
	9:15am: lecture, Pipelines and Automation (Titus)

	10:45am: tutorial: Shell scripts and pipelines.

	1:15pm: tutorial, R (text [https://github.com/jrherr/quick_basic_R_tutorial/blob/master/R_tutorial.md] | code [https://github.com/jrherr/quick_basic_R_tutorial/blob/master/basic_R_tutorial.R]) (Josh)

	Evening: BBQ/dinner.






	Sunday 6/16
	Day of rest.  Brunch in the morning;
takeout dinner in evening.


	Monday 6/17
	
	9:15am: lecture, mRNAseq I (Ian Dworkin)

	Tutorials 10:45am, 1:15pm as usual; topics:




	Mapping to the transcriptome with BWA

	Mapping RNA-seq reads to the genome with tophat

	Differential Expression Analysis with CuffDiff and MISO

	De novo RNA-Seq Assembly




	7:30pm: Some git koans (Titus)

	8-9pm: look busy

	9pm: firepit






	Tuesday 6/18
	
	9:15am: lecture, mRNAseq II (Ian Dworkin)

	Impromptu tutorial: Using seqtk to trim and process reads at an insanely high speed

	Tutorials 10:45am, 1:15pm as usual; mRNAseq, continued.

	Counting reads for RNA-seq (edgeR code)

	8:30pm: Single-cell mRNAseq (Erich Schwarz)

	9:15pm: PacBio intro (Tristan De Buysscher)

	8-11pm: look busy






	Wednesday 6/19
	
	9:15am: Advanced assembly (Rayan)

	10:45am: Calculating k-mer abundance distributions and presentation (Titus)

	1:15pm: Computing without Amazon (Michael Crusoe)

	2pm: Calling SNPs with Samtools (Likit)

	3-5pm: look busy.

	7:30pm: BBQ, gin, and firepit social






	Thursday 6/20
	
	9:15am: lecture, Genome assembly and analysis (Erich Schwarz)

	10:45am: Genome assembly treasure hunt.

	1:15pm: Visualising Read Alignments on UCSC Genome (Likit)

	5pm: Joe Graves, Genome-Wide Convergence with Repeated Evolution in Drosophila melanogaster.

	8:30pm: Sequencing technology Q&A (Nick Beckloff)

	8-11pm: look busy






	Friday 6/21
	
	9:15am: meet at classroom with bags; final lecture.

	10am: course post-mortem/analysis

	11am: lunch at Frona’s Pantry (optional!)










Cheat sheet for starting up an EC2 instance



	use Amazon Machine Instance “ami-c17ec8a8”;

	m1.large or larger;

	make sure you are in the US East zone (Virgina) – see upper right;

	make sure the security group you use has SSH and HTTPS enabled for inbound;









Dramatis personae

Instructors:


	Istvan Albert

	C Titus Brown

	Ian Dworkin



TAs:


	Amanda Charbonneau

	Michael Crusoe

	Tristan De Buysscher

	Joshua Herr

	Elijah Lowe

	Likit Preeyanon



Lecturers:


	Nick Beckloff

	Rayan Chaikhi

	Chris Chandler

	Adina Chuang Howe

	Erich Schwarz






Papers and References


Books


	Practical Computing for Biologists [http://practicalcomputing.org/]

This is a highly recommended book for people looking for a systematic
presentation on shell scripting, programming, UNIX, etc.








RNAseq


	Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks [http://www.ncbi.nlm.nih.gov/pubmed/22383036], Trapnell et al.,
Nat. Protocols.

One paper that outlines a pipeline with the tophat, cufflinks, cuffdiffs and
some associated R scripts.



	Statistical design and analysis of RNA sequencing
data. [http://www.ncbi.nlm.nih.gov/pubmed/20439781], Auer and
Doerge, Genetics, 2010.



	A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. [http://www.ncbi.nlm.nih.gov/pubmed/?term=22965124] Nookaew et al., Nucleic Acids Res. 2012.



	Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments [http://www.ncbi.nlm.nih.gov/pubmed/?term=22998089] Vijay et al., 2012.



	Computational methods for transcriptome annotation and quantification using RNA-seq [http://www.ncbi.nlm.nih.gov/pubmed/21623353], Garber et al., Nat. Methods, 2011.



	Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. [http://www.ncbi.nlm.nih.gov/pubmed/?term=20167110], Bullard et al., 2010.



	A comparison of methods for differential expression analysis of RNA-seq data [http://www.biomedcentral.com/1471-2105/14/91], Soneson and Delorenzi, BMC Bioinformatics, 2013.



	Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. [http://www.ncbi.nlm.nih.gov/pubmed/?term=22872506], Wagner et al., Theory Biosci, 2012.  Also see this blog post [http://blog.nextgenetics.net/?e=51] explaining the paper in detail.








Computing and Data


	A Quick Guide to Organizing Computational Biology Projects [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000424], Noble, PLoS Comp Biology, 2009.

	Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of Statistical Results [http://software-carpentry.org/blog/2012/05/the-most-important-scientific-result-published-in-the-last-year.html], Wicherts et al., PLoS One, 2011.

	Got replicability? [http://econjwatch.org/articles/got-replicability-the-journal-of-money-credit-and-banking-archive], McCullough, Economics in Practice, 2007.



Also see this great pair of blog posts on organizing projects [http://nicercode.github.io/blog/2013-04-05-projects/] and research workflow [http://carlboettiger.info/2012/05/06/research-workflow.html].






Links


Humor


	Data Sharing and Management Snafu in 3 Short Acts [http://www.youtube.com/watch?v=N2zK3sAtr-4&feature=youtu.be]






Resources


	Biostar [http://biostars.org]

A high quality question & answer Web site.



	SEQanswers [http://seqanswers.com/]

A discussion and information site for next-generation sequencing.



	Software Carpentry lessons [http://software-carpentry.org/4_0/index.html]

A large number of open and reusable tutorials on the shell, programming,
version control, etc.








Blogs


	http://www.genomesunzipped.org/

Genomes Unzipped.



	http://ivory.idyll.org/blog/

Titus’s blog.



	http://bcbio.wordpress.com/

Blue Collar Bioinformatics



	http://massgenomics.org/

Mass Genomics



	http://blog.nextgenetics.net/

Next Genetics



	http://gettinggeneticsdone.blogspot.com/

Getting Genetics Done



	http://omicsomics.blogspot.com/

Omics! Omics!















  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
         Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    









  

    
      Navigation

      
        	
          index

        	angus 5.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    

  _images/ucsc002.png
Paste URLSs or data: Or upload:

jalGal3 visibility=squish
MAZONAWS.com/accepted_hits.sorted.bam

hr25 taphat mapping’ type=bam df
o1/ 1852-1R4:72-90:2 14.SomRY

Optional track documentation:  Or upload: No file chosen

)

Click here for an HTML document template that may be used for Genome Browser track descriptions.






_images/win-puttygen-3.png
PuTTYgen Notice =

Successfully imported foreign key
(OpenSSH SSH-2 private key).

To use this key with PuTTY, you need to
use the "Save private key” command to
Saveitin PuTTV's own format.






_images/win-putty-4.png
Custom-Compiled Atlas, Numpy, Scipy, etc
Open Grid Scheduler (0GS) queuing system

Condor workload management system

OpenMPI compiled with Open Grid Scheduler support
IPython 0.12 with parallel support

and more! (use 'apkg -1' to show all installed packages)

[open Gria scheduler/Condor cheat sheet:

gstat/condor_g - show status of batch jobs
qhost/condor_status- show status of hosts, queues, and jabs
qsub/condor_submit - submit batch jobs (e.g. gsub -cwd ./jobscript.sh)
qdel/condor_rm - delete batch jobs (e.g. qdel 7)

qeonf - configure Open Grid Scheduler system

Current system stats:

System load: 0.0 Processes: &
Usage of /:  32.4% of 9.84G3 Users logged in: o

Memory usage: 0% 1P address for eth0: 10.196.153.188
Swap usage: 0%

ootesp-10-296-153-100:-% ]






_images/ucsc001.png
Genom Blat PCR

(Gallus gallus) Genome Browser Gateway

‘The UCSC Genome Browser was created by the Genome Bioinformatics Group of UC Santa Cruz.
Software Copyright (c) The Regents of the University of Califoria. All rights reserved.

clade genome assembly position or search term  gene i
s ((Chicken T3) ((May 2006 WUGSC 2.1/gaiGai3) 18) [chr25:1-16,171
/ / Click here to reset the browser user interface seftings to their defaults.

(track search ) ({manage custom tracks ) ((configure tracks and display ) (_clear position )

~

e Chicken May 2006 (WUGSC 2.1/galGal3) assembly (sequences)

006 chicken (Gallus gallus) v2.1 draft assembly was produced by the Genome Sequencing Center at the Washington Universiy
MO, USA (WUSTL).





transcriptome_de_novo_assembly.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
De novo RNA-Seq Assembly


Trinty and Velvet/Oases are two of the many programs available for de novo RNA-seq assembly.:


apt-get update
apt-get -y --force-yes install libbz2-1.0 libbz2-dev libncurses5-dev openjdk-6-jre-headless zlib1g-dev









Installing trinity


Now change to the /mnt directory and download Trinity::


cd /mnt
wget http://downloads.sourceforge.net/project/trinityrnaseq/trinityrnaseq_r2013-02-25.tgz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Ftrinityrnaseq%2Ffiles%2Ftrinityrnaseq_r2013-02-25.tgz%2Fdownload&ts=1371471384&use_mirror=superb-dca3
mv trinityrnaseq_r2013-02-25.tgz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Ftrinityrnaseq%2Ffiles%2Ftrinityrnaseq_r2013-02-25.tgz%2Fdownload&ts=1371471384&use_mirror=superb-dca3 trinityrnaseq_r2013-02-25.tgz
tar xvfz trinityrnaseq_r2013-02-25.tgz
cd trinityrnaseq_r2013-02-25
make






The latest version of Trinity using bowtie when building your transcriptome, so you must install bowtie as well.:


curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin






Trinity’s manual can be found here http://trinityrnaseq.sourceforge.net/
Now to run trinity, you execute the Trinity.pl command. The required options are –seqType to specify the read type, –JM for number of GB of system memory to use for k-mer counting by jellyfish –left,–right for paired end reads and –single for single ended reads:


Trinity.pl --seqType fq --left <paired file 1> --right <paired file 2>   --min_contig_length 200 --CPU 4 --JM 32G --output <output file name>






For additional reads files you would just add the appropriate flags –left and –right, or –single.





Installing Velvet/Oases


Velvet was originally developed for genome assembly, and Oases was created as an add on for RNA-seq transcriptome assembly, so both programs much be used to complete your transcriptome assembly. To install Velvet:


git clone git://github.com/dzerbino/velvet.git
cd velvet
make
cp velvet* /usr/local/bin
make 'MAXKMERLENGTH=92'






As with most programs there are tons of options and they can be found here http://www.ebi.ac.uk/~zerbino/velvet/ under Manual


Now for Oases:


cd /mnt
git clone git://github.com/dzerbino/oases.git
cd oases
make
make 'VELVET_DIR=/path/to/velvet' 'MAXKMERLENGTH=92'
cp oases /usr/local/bin






To run Velvet/Oases the base commands are:


velveth directory_k k -short reads.fa
velvetg directory_k -read_trkg yes







		Where you would replace ‘k’ with the k overlap value, and you must use the ‘-read_trkg yes’ option to let velvet know to create files that will be needed by Oases. Now to finish the assembly with Oases::


		oases directory_k





When using Velvet/Oases you may want to assemble multiple k values, a quick way to do that without have to retype the command yourselve is:


velveth directory 21,33,2 -short reads.fa
for((n=21; n<=33; n=n+2)); do velvetg directory_"$n" -read_trkg yes; done






And you can run Oases the same way::


for((n=21; n<=33; n=n+2)); do oases directory_"$n"; done






And now you’re finished. Things to consider when select velvet requires you to select a k value and trinity is a memory hog.
Pick the appropriate instance type (most especially memory/RAM!) for your data set size. Trinity is a memory hog and usually you will want to pick 34GB or 68GB of RAM. (This may not be that cheap). Note the number of cores so that you can adjust Trinity command line parameters to use them all.


From here you can map your reads back to your assembled transcriptomes with your favorite mapper (i.e. Bowtie or bwa)








  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

_images/ec2-details.png
Create a New Instance Cancel (X1

starcluster-base-ubuntu-11.10-x86_64 (ami-999d450)
StarCluster Base Ubuntu 11.10 xB6_64 (Us-east-1)

Adam
No
stop
Launch into a VPC: No

Security Details
Key Pair: Adam

Kernel ID: Default Ramdisk ID: Default
User Data: 1AM Role: @
Network Interfaces:

. Gosock i dotmts] [ cownen |






git-koans.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Some git koans



Forking a repository on github



		In a browser, log into github.com.





		Go to https://github.com/ngs-docs/ngs-scripts and click “fork” (upper right).  This will make a copy of that git repository under your account.  It should leave you at http://github.com/<YOUR ACCOUNT>/ngs-scripts.





		Select the URL about midway down the page (‘https://...’) and copy
it to your clipboard.  Hint: There’s a handy little button on the
right to do this.





		Go to your EC2 command line, and type:


git clone https://github.com/<YOUR ACCOUNT>/ngs-scripts.git






where the last bit is pasted from what you copied in step 3.





		Change into the ngs-scripts directory:


cd ngs-scripts/






and poke around.





		Marvel.  Note that what is in your directory is the same as what
you can see via the github interface.





		In a browser, go back to your copy of ngs-scripts.  Select ‘README.md’
in the top-level directory.





		Select ‘Edit’.





		Change something in the text box (e.g. add “Kilroy was here.”)





		Click “Commit changes”.





		Note that in the browser, README.md has been updated.





		In the command line, note that README.md hasn’t changed.  The
repositories are distinct and separate.





		Type:


git pull https://github.com/<YOUR ACCOUNT>/ngs-scripts.git master






to pull the changes from github into your local copy.





		Now README.md is the same in both places!!








What you have done here is cloned your repository, then edited
your file in the original repository, and then pulled the changes
from the original repository into your new repository.





Edit local file and push to github


At the command line,



		Edit the README file (either with a local editor like ‘pico’, or with
Dropbox, or something; e.g. do:


cp README.md ~/Dropbox
(edit it)
cp ~/Dropbox/README.md .






to update it remotely and copy it back over).  Use ‘more’ to make sure
your local copy is different.





		Type:


git diff






to see your changes.  The lines with ‘+’ at the beginning are your
new changes, the lines with ‘-‘ at the beginning are what they
replaced.









		Type:


git commit -am "made some changes"






to commit the changes as things you want to do.


(At this point, you could also type ‘git checkout README.md’ to replace
the changed file with the original.)





		Type:


git push https://github.com/<YOUR ACCOUNT>/ngs-scripts.git master









		Marvel that the local changes are now viewable on github.com directly!








What you have done here is to edit files in one repository, and then
pushed the changes to another (remote) repository.





Create a new repository; add some files to it.


Let’s create a new repository, just for you.


In a Web browser,



		Go to http://github.com/ and click on “New repository.”





		Make up a repository name (it will suggest one; ignore it.)





		Select the “initialize this repo with a README.”





		Select ‘Create repository.”





		Now, clone it to your EC2 machine:


git clone https://github.com/<YOUR ACCOUNT>/<YOUR REPO NAME>.git









		Change into the new repo directory:


cd <YOUR REPO NAME>









		Create a new file:


echo hello world > greetings.txt









		Add it to your repository:


git add greetings.txt









		Commit it:


git commit -am "added greetigs"









		Push it to your github repository:


git push https://github.com/<YOUR ACCOUNT>/<YOUR REPO NAME>.git master









		Go check it out on the Web – do you see greetings.txt?
















  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

_images/ucsc003.png
position/search | chrzs:900,025-904,28 gene (Gump) (dlear) size 4,904 bp. (configure )
GBS owswl  omessl  swswsl  oscessl  swsel el owswsl  sessssl  sesssel

[ —

Rerseq cenos. — -






running-command-line-blast.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Running command-line BLAST



Install BLAST


Here, we’re using curl to download the BLAST distribution from NCBI;
then we’re using ‘tar’ to unpack it into the current directory; and
then we’re copying the program files into the directory
/usr/local/bin, where we can run them from anywhere.


cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data






OK – now you can run BLAST from anywhere!


Again, this is basically what “installing software” means – it just
means copying around files so that they can be run, and (in some cases)
setting up resources so that the software knows where specific data
files are.





Running BLAST


Try typing:


blastall






You’ll get a long laundry list of output, with all sorts of options and
arguments.  Let’s play with some of them.


First! We need some data.  Let’s grab the mouse and zebrafish RefSeq
protein data sets from NCBI, and put them in /mnt, which is the
scratch disk space for Amazon machines:


cd /mnt

curl -O ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot/mouse.protein.faa.gz
curl -O ftp://ftp.ncbi.nih.gov/refseq/D_rerio/mRNA_Prot/zebrafish.protein.faa.gz






If you look at the files in the current directory, you should see both
files, along with a directory called lost+found which is for system information:


ls -l






should show you:


drwx------ 2 root root   16384 2013-01-08 00:14 lost+found
-rw-r--r-- 1 root root 9454271 2013-06-11 02:29 mouse.protein.faa.gz
-rw-r--r-- 1 root root 8958096 2013-06-11 02:29 zebrafish.protein.faa.gz






Both of these files are FASTA protein files (that’s what the .faa suggests)
that are compressed by gzip (that’s what the .gz suggests).


Uncompress them:


gunzip *.faa.gz






and let’s look at the first few sequences:


head -11 mouse.protein.faa






These are protein sequences in FASTA format.  FASTA format is something
many of you have probably seen in one form or another – it’s pretty
ubiquitous.  It’s just a text file, containing records; each record
starts with a line beginning with a ‘>’, and then contains one or more
lines of sequence text.


Let’s take those first two sequences and save them to a file.  We’ll
do this using output redirection with ‘>’, which says “take
all the output and put it into this file here.”


head -11 mouse.protein.faa > mm-first.fa






So now, for example, you can do ‘cat mm-first.fa’ to see the contents of
that file (or ‘less mm-first.fa’).


Now let’s BLAST these two sequences against the entire zebrafish
protein data set. First, we need to tell BLAST that the zebrafish
sequences are (a) a database, and (b) a protein database.  That’s done
by calling ‘formatdb’:


formatdb -i zebrafish.protein.faa -o T -p T






Next, we call BLAST to do the search:


blastall -i mm-first.fa -d zebrafish.protein.faa -p blastp






This should run pretty quickly, but you’re going to get a LOT of output!!
What’s going on?  A few things –




		if you BLAST a sequence against a large database, odds are it will turn
up a lot of spurious matches.  By default, blastall uses an e-value cutoff
of 10, which is very relaxed.


		blastall also reports the first 100 matches, which is usually more than
you want.


		a lot of proteins also have trace similarity to other proteins!









For all of these reasons, generally you only want the first few BLAST
matches, and/or the ones with a “good” e-value.   We do that by adding
‘-b 2 -v 2’ (which says, report only two matches and alignments); and
by adding ‘-e 1e-6’, which says, report only matches with an e-value
of 1e-6 or better:


blastall -i mm-first.fa -d zebrafish.protein.faa -p blastp -b 2 -v 2 -e 1e-6






Now you should get a lot less text!  (And indeed you do...) Let’s put it an
output file, ‘out.txt’:


blastall -i mm-first.fa -d zebrafish.protein.faa -p blastp -b 2 -v 2 -o out.txt






The contents of the output file should look exactly like the output before
you saved it into the file – check it out:


cat out.txt









Converting BLAST output into CSV


Suppose we wanted to do something with all this BLAST output.  Generally,
that’s the case - you want to retrieve all matches, or do a reciprocal
BLAST, or something.


As with most programs that run on UNIX, the text output is in some
specific format.  If the program is popular enough, there will be one
or more parsers written for that format – these are just utilities
written to help you retrieve whatever information you are interested
in from the output.


Let’s conclude this tutorial by converting the BLAST output in out.txt
into a spreadsheet format, using a Python script.  (We’re not doing this
just to confuse you; this is really how we do things around here.)


First, we need to get the script.  We’ll do that using the ‘git’ program:


git clone https://github.com/ngs-docs/ngs-scripts.git /root/ngs-scripts






We’ll discuss ‘git’ more later; for now, just think of it as a way
to get ahold of a particular set of files.  In this case, we’ve placed
the files in /root/ngs-scripts/, and you’re looking to run the
script blast/blast-to-csv.py using Python:


python /root/ngs-scripts/blast/blast-to-csv.py out.txt






This outputs a spread-sheet like list of names and e-values.  To save this
to a file, do:


python /root/ngs-scripts/blast/blast-to-csv.py out.txt > ~/Dropbox/out.csv






The end file, ‘out.csv’, should soon be in your Dropbox on your local
computer.  If you have Excel installed, try double clicking on it.




And that’s the kind of basic workflow we’ll be teaching you:



		Download program


		Download data


		Run program on data


		Look at results





...but in many cases more complicated :).




Note that there’s no limit on the number of sequences you BLAST, etc.
It’s just sheer compute speed and disk space that you need to worry
about, and if you look at the files, it turns out they’re not that big –
so it’s mostly your time and energy.


This will also maybe help you understand why UNIX programs are so
powerful – each program comes with several, or several dozen, little
command line “flags” (parameters), that help control how it does its
work; then the output is fed into another such program, etc.  The possibilities
are literally combinatorial.







Summing up


Command-line BLAST lets you do BLAST searches of any sequences you have,
quickly and easily.  It’s probably the single most useful skill a
biologist can learn if they’re doing anything genomics-y ;).


Its main computational drawback is that it’s not fast enough to deal
with some of the truly massive databases we now have, but that’s
generally not a problem for individual users. That’s because they just
run it and “walk away” until it’s done!


The main practical issues you will confront in making use of BLAST:




		getting your sequence(s) into the right place.


		formatting the database.


		configuring the BLAST parameters properly.


		doing what you want after BLAST!

















  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

_images/ucsc000.png
UCSC Genome Bioinformatics

Genome: at Gene Sorter PCR

ene Proteome

Genome About the UCSC Genome Bioinformatics Site

Browse
’ ‘elcome to the UCSC Genome Browser website. This site contains the reference sequenc

ENCODE portals to the ENCODE and Neandertal projects.

f— ‘We encourage you to explore these sequences with our tools. The Genome Browser zoom:
Sl | Gene Sorter shows expression, homology and other information on groups of genes that ca
Blat Table Browser provides convenient access to the underlying database. VisiGene lets you

expression pattems. Genome Graphs allows you to upload and display genome-wide data s
Table
Browser The UCSC Genome Browser is developed and maintained by the Genome Bioinformatics

S || Engincering (CBSE) at the University of California Santa Cruz (UCSC). If you have feedbs
(SRR | on our public mailing list.

In Silico
PCR News






DGE_analysis_with_MISO_cuffdiff.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Differential Expression Analysis with CuffDiff and MISO


In this tutorial, we will analyse differential gene/isoform expression using
CuffDiff and MISO. You can run the pipeline from scratch, which will start from
mapping reads with TopHat2 or you can skip to DGE analysis using our pre-mapped
reads. Please keep in mind that mapping could take more than four hours.
Two samples from D. melanogaster are used in this tutorial for demonstration
purposes.



Requirements


All programs are required to run the analysis from scratch.
If you only want to analyse DGE with pre-mapped reads, only Cufflinks and MISO are needed.


Installation:


# install bowtie2
cd ~
wget -O bowtie2-2.1.0-linux-x86_64.zip http://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.1.0/bowtie2-2.1.0-linux-x86_64.zip/download
unzip bowtie2-2.1.0-linux-x86_64.zip
cp bowtie2 bowtie2-align bowtie2-build bowtie2-inspect /usr/local/bin/


# install tophat2
cd ~
wget http://tophat.cbcb.umd.edu/downloads/tophat-2.0.8b.Linux_x86_64.tar.gz
tar xvfz tophat-2.0.8b.Linux_x86_64.tar.gz
ln -s ~/tophat-2.0.8b.Linux_x86_64/tophat2 /usr/local/bin

# install cufflinks
cd ~
wget http://cufflinks.cbcb.umd.edu/downloads/cufflinks-2.1.1.Linux_x86_64.tar.gz
tar xvfz cufflinks-2.1.1.Linux_x86_64.tar.gz
cp cufflinks cuffdiff cuffcompare /usr/local/bin

# install MISO with easy_install
cd ~
wget http://pypi.python.org/packages/source/m/misopy/misopy-0.4.9.tar.gz
tar xvfz misopy-0.4.9.tar.gz
cd misopy-0.4.9/
python setup.py install









Read Mapping


Map paired-end reads to Drosophila genome with TopHat2:


cd /mnt

# build bowtie index
bowtie2-build /data/dmel-all-chromosome-r5.51.fasta dmel_genome_bowtie2

# map reads to the genome
# this step could take more than four hours
tophat -r 300 -p 2 -o /mnt/tophat/vg1_005 dmel_genome_bowtie2 \
/mnt/OREf_SAMm_vg1_CTTGTA_L005_R1_001.fastq /mnt/OREf_SAMm_vg1_CTTGTA_L005_R2_001.fastq

tophat -r 300 -p 2 -o /mnt/tophat/w_006 dmel_genome_bowtie2 \
/data/OREf_SAMm_w_GTCCGC_L006_R1_001.fastq /data/OREf_SAMm_w_GTCCGC_L006_R2_001.fastq









CuffDiff expression analysis


Analyse differential expression with CuffDiff:


# prepare the annotation with cuffcompare
# cuffcmp.combined.gtf will be created
cd /mnt
cuffcompare -s /data/dmel-all-chromosome-r5.51.fasta -CG -r \
/data/Drosophila_melanogaster.BDGP5.71.gtf /data/Drosophila_melanogaster.BDGP5.71.gtf

# run cuffdiff, this could take more than an hour
cd /mnt
cuffdiff -p 2 -o cufflinks/comparison cuffcmp.combined.gtf \
/mnt/tophat/vg1_005/accepted_hits.bam tophat/w_006/accepted_hits.bam









MISO expression analysis (Exon-centric)


First we need to sort and index BAM files:


cd /mnt

# sort two BAM files from two samples
# this could take a while
samtools sort /mnt/tophat/vg1_005/accepted_hits.bam accepted_hits.sorted
samtools sort /mnt/tophat/w_006/accepted_hits.bam accepted_hits.sorted

# index BAM files
samtools index /mnt/tophat/vg1_005/accepted_hits.sorted.bam
samtools index /mnt/tophat/w_006/accepted_hits.sorted.bam

# move BAM files to a new directory
mkdir -p /mnt/miso-data/bam-data

mv /mnt/tophat/vg1_005/accepted_hits.sorted.bam /mnt/miso-data/bam-data/vg1_005.sorted.bam
mv /mnt/tophat/vg1_005/accepted_hits.sorted.bam.bai /mnt/miso-data/bam-data/vg1_005.sorted.bam.bai

mv /mnt/tophat/w_006/accepted_hits.sorted.bam /mnt/miso-data/bam-data/w_006.sorted.bam
mv /mnt/tophat/w_006/accepted_hits.sorted.bam.bai /mnt/miso-data/bam-data/w_006.sorted.bam.bai






Then, we need to build alternative splicing index from alternative splicing
annotation. Annotations for fly, mouse and human can be downloaded from
MISO website.


Note that regular gene annotations are not supported by MISO:


# build alternative event index
# modENCODE_SE_4.gff is a small subset of skipped exons
# You will need to build the index for all annotation files if you
# want to do a complete analysis.
index_gff.py --index /data/modENCODE/modENCODE_SE_4.gff /mnt/miso-data/altevents/4_SE






For demonstration purposes, we will use the default settings provided by MISO.
MISO provides a guide to estimate the insert size and standard deviation on its webpage.
However, in this tutorial we will use the insert size and the standard deviation estimated
by TopHat:


# calculate psi value (percent spliced-in),
run_events_analysis.py --compute-genes-psi /mnt/miso-data/altevents/4_SE \
/mnt/miso-data/bam-data/vg1_005/accepted_hits.sorted.bam --output-dir \
/mnt/miso-data/4_SE/vg1_005 --read-len 100 --paired-end 250 99 --event-type=SE

run_events_analysis.py --compute-genes-psi /mnt/miso-data/altevents/4_SE \
/mnt/miso-data/bam-data/w_006/accepted_hits.sorted.bam --output-dir \
/mnt/miso-data/4_SE/w_006 --read-len 100 --paired-end 250 99 --event-type=SE

# summarize the results
run_miso.py --summarize-samples /mnt/miso-data/4_SE/vg1_005/ /mnt/miso-data/4_SE/w_006/

# compare samples
run_miso.py --compare-samples /mnt/miso-data/4_SE/w_006/ \
/mnt/miso-data/4_SE/vg1_005/ /mnt/miso-data/4_SE/comparisons






MISO provides a script that filters out results based on some parameters.
For example, in this tutorial, we filter out all events that have
bayes-factor less than 1.


Note, bayes-factor > 10 is considered significant.
However, none of events in our small dataset has bayes-factor greater than 1.0:


# filter results
filter_events.py --filter /mnt/miso-data/4_SE/comparisons/w_006_vs_vg1_005/bayes-factors/w_006_vs_vg1_005.miso_bf \
--num-inc 1 --num-exc 1 --num-sum-inc-exc 10 --delta-psi 0.20 --bayes-factor 1 \
--output-dir /mnt/miso-data/4_SE/comparisons/filtered/









Visualize AS event with Sashimi plot


Sashimi plot requires some settings written in a file, e.g. sashimi_plot_settings.txt.
Among other things, the number of mapped reads is required for each dataset in order to
calculate expression in RPKM unit.


To get the number of reads, run:


# You do not need to run this.
samtools view -c -f 1 -F 12 /mnt/miso-data/bam-data/w_006.sorted.bam
# total number of mapped reads = 59,324,738
samtools view -c -f 1 -F 12 /mnt/miso-data/bam-data/vg1_005.sorted.bam
# total number of mapped reads = 106,437,936

cd /mnt/miso-data/
# plot the graph from two alternative events
# both graphs will be in sashimi_plot directory
plot.py --plot-event "chr4:848485:848533:-@chr4:844127:844244:-@chr4:823024:823953:-" \
altevents/4_SE/ sashimi_plot_settings.txt  --output-dir sashimi_plot

plot.py --plot-event "chr4:497918:498709:-@chr4:495586:495730:-@chr4:495079:495394:-" \
altevents/4_SE/ sashimi_plot_settings.txt  --output-dir sashimi_plot














  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

_images/ec2-wizard.png
Create a New Instance

Select n option below:

O classic Wizard

Launch an On-Demand or Spot Instance
using the classic wizard with fine-grained
control over how it is aunched.

© Quick Launch Wizard

Launch an On-Demand Instance using an
editable, default configuration so that
You can get started In the cloud as.
auickly s possible,

© AWS Marketplace

AWS Marketplace Is an online store
where you can find and buy software that
Funs on AWS. Launch with 1-Click and
pay by the hour.

Submit Feedback ~ Getting Started Guide

T

Choose a Key P:

R T ———
' Select Extsting "EFESENEw G None

Clame: pdam

Please ROt BT you need to download the key pair before you can cantinue.

D

Choose a Launch G

‘Search through public and AWS Marketplag AMIs or choose from your own custom AM.

The Amazon Linux AN s 2n EBS-backed, PV-GRUB Image. It includes 64 bit © 32 bit O
Linux 3.4, AWS tools, and repository access to multiple versions of Free tier eigible
HySQL, PostgreSQL, Python, Ruby, and Tomeat.

Red Hat Enterprise Linux 6.4

Red Hat Enterprise Linux version 6.4, EBS-boot. 64bit® 32bitO

‘SUSE Linux Enterprise Server 11 . .
'SUSE Linux Enterprise Server 11 Service Pack 2 basic install, EBS boot 64 bit © 32 bit O
with Amazon EC2 AMI Tools preinstalied; Apache 2.2, MySQL 5.0, PHP 5.3, and Ruby 1.8.7
avallable

‘Ubuntu Server 12.04.2 LTS

Ubuntu Server 12.04.2 LTS with support avallable from Canonical
(hitp:/www.ubuntu.com/cloud/services).

]
c]

64bit® 32bitO
Free tier eigible

<>

Note: You can customize your settings In the next step.






search.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    

  

Seqtk.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Plotting the distribution of mapping mismatches



Mapping and calculating mismatch positions


First, run Bowtie to produce a mapping file:


cd /mnt
time bowtie -p 2 drosophila_bowtie -q /data/drosophila/RAL357_1.fastq RAL357_1_bowtie.map






This will produce a file that shows the mismatches in the mapping – check
it out by doing ‘head RAL357_1_bowtie.map’.


Next, get an updated copy of the ngs-scripts:


git clone https://github.com/ngs-docs/ngs-scripts.git /root/ngs-scripts






and run it on the map file:


python /root/ngs-scripts/bowtie/map-profile.py RAL357_1_bowtie.map > RAL357_1_bowtie.count






This will produce a .count file, which, again, you can check out with
‘head’.


(You can look at the script by doing ‘more /root/ngs-scripts/bowtie/map-profile.py’ or by viewing it online at github [https://github.com/ngs-docs/ngs-scripts/blob/master/bowtie/map-profile.py].)





Plotting


Now, go to ‘https://‘ + YOUR MACHINE NAME, and click on “New notebook”.
In the new notebook, paste:


counts = numpy.loadtxt('/mnt/RAL357_1_bowtie.count')
plot(counts[:,0], counts[:,1])
axis(ymax=50000, xmax=50)






and hit “shift-ENTER” to execute this code.





Exercise


Note the spike around 12 – try using the ‘map-profile-N.py’ script
(in the same place as the map-profile script) to plot the distribution
of mismatches where N is in the read.  Do the spikes align?










  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

short-read-quality-evaluation.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Evaluating the quality of your short reads, and trimming them



Warning


These documents are not maintained and their instructions may be
out of date. However the GED Lab does maintain the khmer protocols [http://khmer-protocols.readthedocs.org/] which may cover similar
topics. See also the installation instructions for the current version
of the khmer project [https://khmer.readthedocs.org/en/latest/install.html].




As useful as BLAST is, we really want to get into sequencing data,
right?  One of the first steps you must do with your data is
evaluate its quality and throw away bad sequences.


Before you can do that, though, you need to install a bunch o’ software.



Packages to install


Install screed:


cd /usr/local/share
git clone https://github.com/ged-lab/screed.git
cd screed
python setup.py install






Install khmer:


cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
make






Install Trimmomatic:


cd /root
curl -O http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.27.zip
unzip Trimmomatic-0.27.zip
cp Trimmomatic-0.27/trimmomatic-0.27.jar /usr/local/bin






Install FastQC:


cd /usr/local/share
curl -O http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.10.1.zip
unzip fastqc_v0.10.1.zip
chmod +x FastQC/fastqc






Install libgtextutils and fastx:


cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/libgtextutils-0.6.1.tar.bz2
tar xjf libgtextutils-0.6.1.tar.bz2
cd libgtextutils-0.6.1/
./configure && make && make install

cd /root
curl -O http://hannonlab.cshl.edu/fastx_toolkit/fastx_toolkit-0.0.13.2.tar.bz2
tar xjf fastx_toolkit-0.0.13.2.tar.bz2
cd fastx_toolkit-0.0.13.2/
./configure && make && make install






In each of these cases, we’re downloading the software – you can use
google to figure out what each package is and does if we don’t discuss
it below.  We’re then unpacking it, sometimes compiling it (which we
can discuss later), and then installing it for general use.





Getting some data


Start at your EC2 prompt, then type


cd /mnt






Now, grab the 5m E. coli reads from our data storage (originally from
Chitsaz et al. [http://www.ncbi.nlm.nih.gov/pubmed/21926975]):


curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoli_ref-5m.fastq.gz






You can take a look at the file contents by doing:


gunzip -c ecoli_ref-5m.fastq.gz | less






(use ‘q’ to quit the viewer).  This is what raw FASTQ looks like!


Note that in this case we’ve given you the data interleaved, which
means that paired ends appear next to each other in the file.  Most of
the time sequencing facilities will give you data that is split out
into s1 and s2 files.  We’ll need to split it out into these files for
some of the trimming steps, so let’s do that –


python /usr/local/share/khmer/sandbox/split-pe.py ecoli_ref-5m.fastq.gz
mv ecoli_ref-5m.fastq.gz.1 ecoli_ref-5m_s1.fq
mv ecoli_ref-5m.fastq.gz.2 ecoli_ref-5m_s2.fq






We’ll also need to get some Illumina adapter information – here:


curl -O https://s3.amazonaws.com/public.ged.msu.edu/illuminaClipping.fa






These sequences are (or were) “trade secrets” so it’s hard to find ‘em.
Don’t ask me how I got ‘em.





Trimming and quality evaluation of your sequences


Start at the EC2 login prompt.  Then,


cd /mnt






Make a directory to store all your trimmed data in, and go there:


mkdir trim
cd trim






Now, run Trimmomatic [http://www.usadellab.org/cms/index.php?page=trimmomatic] to eliminate Illumina adapters from your sequences –


java -jar /usr/local/bin/trimmomatic-0.27.jar PE ../ecoli_ref-5m_s1.fq ../ecoli_ref-5m_s2.fq s1_pe s1_se s2_pe s2_se ILLUMINACLIP:../illuminaClipping.fa:2:30:10






Next, let’s take a look at data quality using FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]


mkdir /root/Dropbox/fastqc
/usr/local/share/FastQC/fastqc s1_* s2_* --outdir=/root/Dropbox/fastqc






This will dump the FastQC output into your Dropbox folder, under the
folder ‘fastqc’.  Go check it out on your local computer in Dropbox –
you’re looking for folders named <filename>_fastqc, for example
‘s1_pe_fastqc’; then double click on ‘fastqc_report.html’.


It looks like a lot of bad data is present after base 70, so let’s just trim
all the sequences that way.  Before we do that, we want to interleave the
reads again (don’t ask) –


python /usr/local/share/khmer/sandbox/interleave.py s1_pe s2_pe > combined.fq






Now, let’s use the FASTX toolkit to trim off bases over 70, and
eliminate low-quality sequences.  We need to do this both for our
combined/paired files and our remaining single-ended files:


fastx_trimmer -Q33 -l 70 -i combined.fq | fastq_quality_filter -Q33 -q 30 -p 50 > combined-trim.fq

fastx_trimmer -Q33 -l 70 -i s1_se | fastq_quality_filter -Q33 -q 30 -p 50 > s1_se.filt






Let’s take a look at what we have –


ls -la






You should see:


drwxr-xr-x 2 root root       4096 2013-04-08 03:33 .
drwxr-xr-x 4 root root       4096 2013-04-08 03:21 ..
-rw-r--r-- 1 root root  802243778 2013-04-08 03:33 combined-trim.fq
-rw-r--r-- 1 root root 1140219324 2013-04-08 03:26 combined.fq
-rw-r--r-- 1 root root  570109662 2013-04-08 03:23 s1_pe
-rw-r--r-- 1 root root     407275 2013-04-08 03:23 s1_se
-rw-r--r-- 1 root root     319878 2013-04-08 03:33 s1_se.filt
-rw-r--r-- 1 root root  570109662 2013-04-08 03:23 s2_pe
-rw-r--r-- 1 root root          0 2013-04-08 03:22 s2_se






Let’s run FastQC on things again, too:


mkdir /root/Dropbox/fastqc.filt
/usr/local/share/FastQC/fastqc combined-trim.fq s1_se.filt --outdir=/root/Dropbox/fastqc.filt






Now go look in your Dropbox folder under ‘fastqc.filt’, folder
‘combined-trim.fq_fastqc’ – looks a lot better, eh?










  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

_images/win-putty-1.png
B8 PUTTY Configuration

-——

& Session 2

£SSH

- Ath

X1

“

Basic optons foryour PuTTY session

‘Specty the destnation you want to connect to






plot-mapping-mismatches.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Plotting the distribution of mapping mismatches



Mapping and calculating mismatch positions


First, run Bowtie to produce a mapping file:


cd /mnt
time bowtie -p 2 drosophila_bowtie -q /data/drosophila/RAL357_1.fastq RAL357_1_bowtie.map






This will produce a file that shows the mismatches in the mapping – check
it out by doing ‘head RAL357_1_bowtie.map’.


Next, get an updated copy of the ngs-scripts:


git clone https://github.com/ngs-docs/ngs-scripts.git /root/ngs-scripts






and run it on the map file:


python /root/ngs-scripts/bowtie/map-profile.py RAL357_1_bowtie.map > RAL357_1_bowtie.count






This will produce a .count file, which, again, you can check out with
‘head’.


(You can look at the script by doing ‘more /root/ngs-scripts/bowtie/map-profile.py’ or by viewing it online at github [https://github.com/ngs-docs/ngs-scripts/blob/master/bowtie/map-profile.py].)





Plotting


Now, go to ‘https://‘ + YOUR MACHINE NAME, and click on “New notebook”.
In the new notebook, paste:


counts = numpy.loadtxt('/mnt/RAL357_1_bowtie.count')
plot(counts[:,0], counts[:,1])
axis(ymax=50000, xmax=50)






and hit “shift-ENTER” to execute this code.





Exercise


Note the spike around 12 – try using the ‘map-profile-N.py’ script
(in the same place as the map-profile script) to plot the distribution
of mismatches where N is in the read.  Do the spikes align?










  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

_images/win-puttygen-2.png
B Load private key: LX)

.+ Computer » Homeoon psf @) » winshare < [ [ scarch winshare »
Organize v New folder 0 @ |
El RecentPlaces ~ Name . Date modified Type
D ab AN21043PM  PEMFile






GETTING-STARTED.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
		Edit conf.py and replace ‘labibi’ in the ‘project’ line.





		Either replace or eliminate the Google Analytics ID, the disqus name,
and the github information.


html_context = {
  "google_analytics_id" : 'UA-36028965-1',
  "disqus_shortname" : 'labibi',
  "github_base_account" : 'ctb',
  "github_project" : 'labibi',
}
















  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

kmer-abundance-and-diginorm.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Calculating k-mer abundance distributions



Warning


These documents are not maintained and their instructions may be
out of date. However the GED Lab does maintain the khmer protocols [http://khmer-protocols.readthedocs.org/] which may cover similar
topics. See also the installation instructions for the current version
of the khmer project [https://khmer.readthedocs.org/en/latest/install.html].




Start up an m1.large.


Install screed:


cd /usr/local/share
git clone https://github.com/ged-lab/screed.git
cd screed
python setup.py install






Install khmer:


cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
make






Then, grab the following IPython Notebook:


cd /usr/local/notebooks
curl -O https://raw.github.com/ngs-docs/ngs-notebooks/master/ngs-5x-kmer-abundance-distributions-2013.ipynb






Now, go to your IPython Notebook interface (https:// + machine name)
and open the notebok ‘ngs-5x-kmer-abundance-distributions-2013.ipynb’.








  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

assembly-with-a5.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Assembling microbial genomes with A5


Let’s try using a different assembly pipeline – the A5 pipeline, from
An Integrated Pipeline for de Novo Assembly of Microbial Genomes [http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0042304].


First, let’s install it.  You can go to the ngopt project [http://code.google.com/p/ngopt/] to see the info necessary; we’re
going to grab the Linux/64-bit version, which corresponds to our Amazon
instance.


cd /root
curl -O http://ngopt.googlecode.com/files/ngopt_a5pipeline_linux-x64_20120518.tar.gz
tar xzf ngopt_a5pipeline_linux-x64_20120518.tar.gz
mv ngopt_a5pipeline_linux-x64_20120518 ngopt






These commands download it, unpack it, and rename it to ‘ngopt’.


Now, go to your working space, and create a new directory –


cd /mnt
mkdir a5
cd a5






‘a5’ has its own preprocessing steps and everything; if you trust them, you can
just run a5 directly:


/root/ngopt/bin/a5_pipeline.pl ../ecoli_ref-5m.fastq.gz ecoli












  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

ucsc-genome-browser.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Visualising Read Alignments on UCSC Genome



UCSC genome browser


UCSC genome browser is a web-based tool that includes a genome browser and
sequence alignment tools.
The genome browser supports many different file formats including BAM format.
For more information please go to http://genome.ucsc.edu.





Setup Apache web server


In order create and view the custom track of our data, you can
upload your file to UCSC web server. However, if you file is big, it will
take a long time to upload. In this tutorial, we will set up Apache
webserver and let UCSC genome browser download data from the amazon machine
via HTTP.


First, install Apache using apt-get:


apt-get -y install apache2
/etc/init.d/apache2 start






Then use your internet browser to go to http://$amazon-machine-name, for example:


http://ec2-184-72-90-214.compute-1.amazonaws.com






You should see “It works!!”. That means it works.





Visualize BWA output


We will first look at the mapping result from BWA. The mapping result is
saved in BAM format. We have to sort and index the file before visualize it
on UCSC genome browser.


To sort and index BAM file, execute:


cd /data/drosophila
samtools sort RAL357_full_bwa.bam RAL357_full_bwa.sorted
samtools index RAL357_full_bwa.sorted.bam






Next, create links of our files to /var/www/:


ln -fs /data/drosophila/RAL357_full_bwa.sorted.bam /var/www/
ln -fs /data/drosophila/RAL357_full_bwa.sorted.bam.bai /var/www/









Create a custom track on UCSC genome browser


Using your internet browser to go to http://genome.ucsc.edu.


At the home page, click “Genomes” on the left corner.


[image: _images/ucsc000.png]
On the genomes page, select an organism of your chioce. In this case, select
“D. melanogaster” from group “Insect”.
Then click “manage custom track” or “add custom track” if you already have other custom tracks.


[image: _images/ucsc001.png]
Copy and paste the line below in “Paste URLs or data:” box:


 track name='bwa mapping' type=bam db=dm3 visibility=squish bigDataUrl=http://$amazon-machine-name/RAL357_full_bwa.sorted.bam

# name = track name (has to be unique) [default:User Track]
# type = file type (bam, bed, bigBed, wig, bedWig)
# db = genome
# visibility = display mode (full, squish, pack, dense)
# bigDataUrl = URL to a data file
# description = description [optional]






Don’t forget to change “$amazon-machine-name” to your amazon machine DNS.


[image: _images/ucsc002.png]
Then click submit and click “Go to genome browser”.
You should see something like this.


[image: _images/ucsc003.png]
Adding a custom track using a URL is suitable and required for a large file.
Large files need to be indexed by a tool downloadable from UCSC genome browser.


For a small file, you can upload a file directly from you local computer
and it doesn’t need to be indexed.










  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

day3.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Day 3 – Mapping


Before following the procedures below, go through the process of
starting up an ec2 instance and logging in – see Day 1 - Getting started with Amazon for
details.  Make sure you follow the Dropbox instructions.


The lecture will start at 9:30, the first tutorial
(Running command-line BLAST) will start at 10:45, and the
second tutorial will start at 1:30.




		Mapping reads with bwa and bowtie
		Getting the reads


		Getting the Drosophila genome


		Installing and running bwa


		bwa options


		Aligning reads with bowtie


		Processing the BWA and Bowtie output for use with Samtools


		Viewing the BWA and Bowtie output with TView



















  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

log-in-with-ssh-win.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Logging into your new instance “in the cloud” (Windows version)


Download Putty and Puttygen from here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html



Generate a ppk file from your pem file


(You only need to do this once!)


Open puttygen; select “Load”.


[image: _images/win-puttygen.png]
Find and load your ‘.pem’ file; it’s probably in your Downloads
folder.  Note, you have to select ‘All files’ on the bottom.


[image: _images/win-puttygen-2.png]
Load it.


[image: _images/win-puttygen-3.png]
Now, “save private key”.  Put it somewhere easy to find.


[image: _images/win-puttygen-4.png]



Logging into your EC2 instance with Putty


Open up putty, and enter your hostname into the Host Name box.


[image: _images/win-putty-1.png]
Now, go find the ‘SSH’ section and enter your ppk file (generated above
by puttygen).  Then select ‘Open’.


[image: _images/win-putty-2.png]
Log in as “root”.


[image: _images/win-putty-3.png]
Declare victory!


[image: _images/win-putty-4.png]








  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

rnaseq_tophat.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Mapping RNA-seq reads to the genome with tophat


In this tutorial, we’ll map reads from an RNA-seq study in Drosophila melanogaster to the reference genome using tophat. tophat is a “splicing aware” aligner, so we can map transcripts to the genome. This is quite different conceptually to mapping to the transcriptome directly. At the very end, we can compare these results to the results we got from mapping directly to the reference transcriptome. First, make sure you have tophat/bowtie and SAMTools installed. You’ll also need to download the D. melanogaster genome:


mkdir tophat_dmel
cd tophat_dmel
curl -O -L ftp://ftp.flybase.net/releases/current/dmel_r5.51/fasta/dmel-all-chromosome-r5.51.fasta.gz
gunzip dmel-all-chromosome-r5.51.fasta.gz






As usual, we first need to index the reference genome:


reference=dmel-all-chromosome-r5.51.fasta
reference_index=dmel_genome_bowtie2
bowtie2-build ${reference} ${reference_index}






We also need a list of annotations to go along with the reference genome. This file basically specifies the coordinates of all the coding sequences in the reference (or of any other feature that we might be interested in). It’s a text file, so feel free to take a look at the contents if you want. In this case, it’s a GTF file, which should be included in the image you’re using.:


transcript_annotation=Drosophila_melanogaster.BDGP5.71.gtf






And let’s remember to create variables for our sequence data, and our output:


reads_1=OREf_SAMm_vg1_CTTGTA_L005_R1_001.fastq
reads_2=OREf_SAMm_vg1_CTTGTA_L005_R2_001.fastq
output=vg_1






Now we’re ready to use tophat. Tophat can map RNA-seq reads to a reference genome even if those reads span introns:


tophat -p 4 -G ${transcript_annotation} -o ${output} --no-novel-juncs ${reference_index} ${reads_1} ${reads_2}






The -p 4 option tells tophat to use multithreading (4 processors). Tophat will “know” that you’re dealing with paired-end data because you gave it two sets of reads. The –no-novel-juncs option tells tophat that we won’t be looking for any novel splice sites (more on that later).


Tophat places the results in the directory named ${output}, which will contain a number of files. The file that we’re interested in for now is accepted_hits.bam, which is the reads that were mapped successfully.:


samtools sort ${output}/accepted_hits.bam ${output}/accepted_hits.sorted
samtools index ${output}/accepted_hits.sorted.bam






From here, we can feed our BAM file into our quantification script.








  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

start-up-an-ec2-instance.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Start up an EC2 instance


Go to ‘https://aws.amazon.com‘ in a Web browser.


Select ‘My Account/Console’ menu option ‘AWS Management Console.”


Log in with your username & password.


Click on EC2 (upper left).


Select “Launch Instance” (midway down the page), and select “Quick
Launch Wizard”.



The launch wizard


[image: _images/ec2-wizard.png]
On this page,



		Name your new computer something (here, “Adam”; name it after yourself instead).


		Create a new key pair (here, “Adam”; name it after yourself instead) and Download it.


		Select “More Amazon machine images.”


		Click on “Continue.”  This will be greyed out until you download the
key pair (button, upper right).





Note: You only need to create a new key pair the first time you’re
doing this – you can select the one you created the first time, if you
still have a copy of the key file you downloaded stored somewhere.





“Create a new instance” page 1


Enter ‘ami-c17ec8a8’ into the search box and click “search”.  Select
it, and hit Continue.


(If it doesn’t show up, exit the wizard and make sure you’re in US East
zone – see upper right of EC2 console.)





“Create a new instance” page 2


On this page, “Edit details” until it looks like the below image –


[image: _images/ec2-details.png]

		Make sure your “Type” is m1.large.


		Make sure your “Availability zone” is something specific, like us-east-1c.


		Make sure your “Security group” is set to default.





Then, click “Launch”.





Wait for your instance to be running


Go to the ‘instances’ list and make sure your particular instance is
running.


[image: _images/ec2-instance-running.png]
You’ll need the hostname of your new computer, on the bottom (ec2-...) –
we suggest selecting this and copying it somewhere.


Then, go to Logging into your new instance “in the cloud” (Windows version) or Logging into your new instance “in the cloud” (Mac version)










  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

assembling-ecoli-with-velvet.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Assembling E. coli sequences with Velvet



Warning


These documents are not maintained and their instructions may be
out of date. However the GED Lab does maintain the khmer protocols [http://khmer-protocols.readthedocs.org/] which may cover similar
topics. See also the installation instructions for the current version
of the khmer project [https://khmer.readthedocs.org/en/latest/install.html].




Install screed:


cd /usr/local/share
git clone https://github.com/ged-lab/screed.git
cd screed
python setup.py install






Install khmer:


cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
make






Grab the ngs-scripts:


git clone https://github.com/ngs-docs/ngs-scripts.git /root/ngs-scripts






and install the Velvet assembler:


cd /root
curl -O http://www.ebi.ac.uk/~zerbino/velvet/velvet_1.2.10.tgz
tar xzf velvet_1.2.10.tgz
cd velvet_1.2.10
make MAXKMERLENGTH=51
cp velvet? /usr/local/bin






Now, let’s create a working directory:


cd /mnt
mkdir assembly
cd assembly






Download some E. coli data.  The first data set
(ecoli_ref-5m-trim.fastq.gz) is the trimmed PE data sets from the
other day (see Evaluating the quality of your short reads, and trimming them), and the second
data set is a specially processed data set using digital
normalization [http://ged.msu.edu/papers/2012-diginorm/] that will
assemble quickly.


curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoli_ref-5m-trim.fastq.gz
curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoli-reads-5m-dn-paired.fa.gz






Now... assemble the small, fast data sets, using the Velvet assembler.  Here
we will set the required parameter k=31:


velveth ecoli.31 31 -shortPaired -fasta.gz ecoli-reads-5m-dn-paired.fa.gz
velvetg ecoli.31 -exp_cov auto






Check out the stats for the assembled contigs for a cutoff of 1000:


python /usr/local/share/khmer/sandbox/assemstats3.py 1000 ecoli.*/contigs.fa






Also try assembling with k=33 and k=35:


velveth ecoli.33 33 -shortPaired -fasta.gz ecoli-reads-5m-dn-paired.fa.gz
velvetg ecoli.33 -exp_cov auto

velveth ecoli.35 35 -shortPaired -fasta.gz ecoli-reads-5m-dn-paired.fa.gz
velvetg ecoli.35 -exp_cov auto






Now check out the stats for the assembled contigs for a cutoff of 1000:


python /usr/local/share/khmer/sandbox/assemstats3.py 1000 ecoli.*/contigs.fa






(Also read: What does k control in de Bruijn graph assemblers? [http://ivory.idyll.org/blog/the-k-parameter.html].)


Over lunch, run an assembly of the larger read data set.  (You might want to
do this in screen.)


velveth ecoli-full.31 31 -short -fastq.gz ecoli_ref-5m-trim.fastq.gz
velvetg ecoli-full.31 -exp_cov auto







Comparing and evaluating assemblies - Mapping


Install bowtie:


cd /root

curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip
unzip bowtie-0.12.7-linux-x86_64.zip
cd bowtie-0.12.7
cp bowtie bowtie-build bowtie-inspect /usr/local/bin






Now, for each contigs file, extract the contigs over (say) 300 bases –


cd /mnt/assembly

python /usr/local/share/khmer/sandbox/extract-long-sequences.py 300 ecoli.31/contigs.fa > ecoli-31.fa
python /usr/local/share/khmer/sandbox/extract-long-sequences.py 300 ecoli.33/contigs.fa > ecoli-33.fa
python /usr/local/share/khmer/sandbox/extract-long-sequences.py 300 ecoli.35/contigs.fa > ecoli-35.fa






...and build the indices:


for i in 31 33 35; do
   bowtie-build ecoli-$i.fa ecoli-$i
done






Finally, map a subset of the reads to each subset:


gunzip -c ecoli_ref-5m-trim.fastq.gz | head -1200000 > 300k-reads.fq

for i in 31 33 35; do
   echo mapping to ecoli-$i
   bowtie -p 2 ecoli-$i -q 300k-reads.fq 300k-reads.x.$i.map
done






You can look at the statistics (# of reads aligned) as a proxy for
“completeness” of the assembly –


mapping to ecoli-31
# reads processed: 300000
# reads with at least one reported alignment: 266468 (88.82%)
# reads that failed to align: 33532 (11.18%)
Reported 266468 alignments to 1 output stream(s)

mapping to ecoli-33
# reads processed: 300000
# reads with at least one reported alignment: 256539 (85.51%)
# reads that failed to align: 43461 (14.49%)
Reported 256539 alignments to 1 output stream(s)

mapping to ecoli-35
# reads processed: 300000
# reads with at least one reported alignment: 243645 (81.22%)
# reads that failed to align: 56355 (18.79%)
Reported 243645 alignments to 1 output stream(s)






generally you want this number to be as high as possible, because it
means that you’ve got an assembly representing more of the reads.


Note that you can also ‘wc’ to count the number of lines in the map files:


wc -l *.map






from which you can generate the numbers above.





Comparing and evaluating assemblies – BLAST


Install BLAST:


cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data






Build BLAST databases for the assemblies you’ve done:


cd /mnt/assembly

for i in 31 33 35
do
   formatdb -i ecoli-$i.fa -o T -p F
done






Also download the true reference genome:


curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoliMG1655.fa.gz
gunzip ecoliMG1655.fa.gz
formatdb -i ecoliMG1655.fa -o T -p F






And now do a few pairwise BLASTs:


blastall -i ecoli-31.fa -d ecoliMG1655.fa -p blastn -e 1e-20 -o 31.x.mg.blastn &
blastall -d ecoli-31.fa -i ecoliMG1655.fa -p blastn -e 1e-20 -o mg.x.31.blastn &
blastall -i ecoli-31.fa -d ecoli-33.fa -p blastn -e 1e-20 -o 31.x.33.blastn &
blastall -d ecoli-31.fa -i ecoli-33.fa -p blastn -e 1e-20 -o 33.x.31.blastn &






Compute overlaps:


python /root/ngs-scripts/blast/calc-blast-cover.py ecoli-33.fa 31.x.33.blastn 300 ecoli-31.fa
python /root/ngs-scripts/blast/calc-blast-cover.py ecoli-31.fa 33.x.31.blastn 300 ecoli-33.fa

python /root/ngs-scripts/blast/calc-blast-cover.py ecoliMG1655.fa 31.x.mg.blastn 300 ecoli-31.fa
python /root/ngs-scripts/blast/calc-blast-cover.py ecoli-31.fa mg.x.31.blastn 300 ecoliMG1655.fa






You should see:


total bases in reference: 4588331
total ref bases covered : 4232257
fraction                : 0.92239574695
reference               : ecoli-33.fa
blast file              : 31.x.33.blastn
query sequences         : ecoli-31.fa






which tells you that 4.23 mb of the 4.58 mb (92.2% of the bases) in
ecoli-33 have an alignment in ecoli-31.  Similarly,


total bases in reference: 4606276
total ref bases covered : 4223094
fraction                : 0.916813061137
reference               : ecoli-31.fa
blast file              : 33.x.31.blastn
query sequences         : ecoli-33.fa






tells you that 91.6% (4.22/4.61 mb) of the bases in ecoli-31.fa have an
alignment in ecoli-33.


The numbers for the reference genome are a bit strange, though –


total bases in reference: 4639675
total ref bases covered : 4409820
fraction                : 0.950458814464
reference               : ecoliMG1655.fa
blast file              : 31.x.mg.blastn
query sequences         : ecoli-31.fa

total bases in reference: 4606276
total ref bases covered : 896964
fraction                : 0.194726499237
reference               : ecoli-31.fa
blast file              : mg.x.31.blastn
query sequences         : ecoliMG1655.fa






What?  So, 95% of the reference genome is covered by ecoli-31, but
only 19.4% of ecoli-31.fa is covered by the E. coli genome?  How is
that possible??


What’s going on?  Any ideas?


It turns out that, by default, BLAST only shows the first 200-250 matches
for each query sequence!  In the case where you have one query
sequence (the E. coli genome) and many query contigs (ecoli-31.fa)
there are several thousand hits; BLAST is only showing you the first
few hundred.


To fix this, re-run BLAST with different -b and -v parameters, to
increase the number of hits reported, and then re-run the
calc-blast-cover command:


blastall -d ecoli-31.fa -i ecoliMG1655.fa -p blastn -e 1e-20 -o mg.x.31.blastn -b 5000 -v 5000
python /root/ngs-scripts/blast/calc-blast-cover.py ecoli-31.fa mg.x.31.blastn 300 ecoliMG1655.fa






and you should get this:


total bases in reference: 4606276
total ref bases covered : 4354561
fraction                : 0.945353904108
reference               : ecoli-31.fa
blast file              : mg.x.31.blastn
query sequences         : ecoliMG1655.fa






Much better!





Comparing and evaluating assemblies – contig size distributions


Go to IPython Notebook (https:// + machine name), and enter the code
below in different cells.  Use SHIFT-Enter to execute the Python code.


First, write a function to load in the lengths of sequences in an
assembly:


import screed

def get_length_distribution(filename):
    x = []
    for record in screed.open(filename):
        x.append(len(record.sequence))
    return x






Then load the data from E. coli 31 and E. coli 33.


ecoli31 = get_length_distribution('/mnt/assembly/ecoli-31.fa')
ecoli33 = get_length_distribution('/mnt/assembly/ecoli-33.fa')






Now look at a histogram of the length distribution:


hist(ecoli31)






The problem with this graph is that it shows the number of contigs
by bin, not the number of bases.  Let’s fix:


def generate_cumulative_above(contig_sizes):
    sizes = list(reversed(sorted(contig_sizes)))

    sizesum = []
    sofar = 0
    for size in sizes:
        sofar += size
        sizesum.append((size, sofar))

    sizesum.sort()

    return numpy.array(sizesum)






Now, plot:


cum31 = generate_cumulative_above(ecoli31)
cum33 = generate_cumulative_above(ecoli33)

plot(cum31[:,0], cum31[:,1], label='k=31')
plot(cum33[:,0], cum33[:,1], label='k=33')
legend()







Suggested exercises



		Plot the above graphs for k=35 on the digitally normalized data, as well
on the ecoli-full.31 data set.





		For the digitally normalized data, find the “best” k value.  Why is it
the best? :)





		Note that the ‘ecoli_ref-5m-trim.fastq.gz’ is interleaved but contains
both pairs and orphans.  Use:


python /usr/local/share/khmer/sandbox/strip-and-split-for-assembly.py






to split things up into a .pe and .se file, and then modify the velveth
command to use ‘-shortPaired’ on the .pe file, and ‘-short’ on the .se
file.


















  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

rnaseq_bwa_counting.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Counting reads for RNA-seq


We now have reads mapped to the reference transcriptome. The next step is counting: how many reads mapped to each transcript? These numbers are what we need to be able to identify differentially expressed genes.


One simple way to do this step is to use bedtools with the BAM file you generated (sorted and indexed) to do the counting. This approach also requires a reference file, and an annotation file containing the coordinates of all the transcripts/exons/whatever features you’re interested in. bedtools will tell you how many reads map to each feature.


If you’ve mapped your reads to an annotated reference genome, you can probably download a pre-computed annotation file. We’ve done that for the Drosophila genome and placed it into the snapshot you’re using.


However, in many cases nobody has already created this annotation file for you. For example, you may be mapping reads to a transcriptome that you assembled yourself (maybe even using the same RNA-seq dataset). In that case, to use bedtools, you’ll need to create an annotation file yourself. We’ve written a simple script that will create a simple BED file that has one entry for each contig in your transcriptome, so that you can use bedtools to do the counting for you (note: this script requires the BioPython package):


'''
Generates a BED file from a fasta file
The BED file contains one annotation feature for each sequence in the fasta,
 each one spanning the entire sequence
Can then use this BED file to count the number of reads mapping to each sequence
 in the fasta file with existing tools

Usage:

python make_bed_from_fasta.py <sequences.fasta>

'''

import sys
from Bio import SeqIO

fasta_handle = open(sys.argv[1], "rU") #Open the fasta file specified by the user on the command line

#Go through all the records in the fasta file
for record in SeqIO.parse(fasta_handle, "fasta"):
    cur_id = record.id #Name of the current feature
    cur_length = len(record.seq) #Size of the current feature
    print "%s\t%d\t%d" % (cur_id, 0, cur_length) #Output the name, start, and end coordinates to the screen






In this case, we mapped reads to the Drosophila transcriptome with BWA (rather than to the Drosophila genome with tophat). So let’s create a BED file and do the counting (as always, make sure you’re doing all of this in the right directory!):


python make_bed_from_fasta.py dmel-all-transcript-r5.51.fasta > dmel_transcriptome.bed
multiBamCov -q 30 -p -bams ${bam1} ${bam2} ${bam3} ${bam4} -bed dmel_transcriptome.bed > bwa_transcriptome_counts.txt






In the multiBamCov line, the -q 30 option tells the software to only count reads that have a mapping quality of 30 or better, while the -p option specifies that you only want to use properly mapping read pairs.


If you take a look at the file:


head bwa_transcriptome_counts.txt






you’ll see that it is a readable flat text file, e.g.:


FBtr0086024   0       2202    0       0       0       0
FBtr0082362   0       898     0       0       0       0
FBtr0300409   0       4704    284     458     645     389
FBtr0308603   0       4307    18      14      26      6
FBtr0080982   0       1284    1355    1342    2178    1172
FBtr0305683   0       1463    2       2       4       4
FBtr0299694   0       635     0       0       0       0
FBtr0299695   0       587     0       0       0       0
FBtr0085737   0       2643    0       0       0       0
FBtr0309194   0       2398    0       0       0       0






The first column is transcript IDs, and the second and third columns are the start and end positions of each transcript that reads could map to (they all start at 0 and span the entire length of each transcript, because we wanted to count all reads that map to anywhere in the transcript). The following four columns are the read counts for each sample.








  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

teach-me-intervals.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Teach me interval based analysis


Premise: a participant in the course solves
a problem at the podium while taking input from the audience when
necessary.



The problem to be solved



Create mutations in the yeast genome and simulate sequencing reads from
this genome. Apply bioinformatics tools on this data and find those
genes that contain mutations in their promoter regions.


The input data will consist of the yeast genome in FASTA format and
the gene annotations as a GFF file. Download the data from
http://bcc.bx.psu.edu/data/teachme.zip (3.6Mb)






The installation for bedtools is described at
the beginning of Interval Analysis Tutorial.
We assume that you have already installed the bwa and samtools packages.


The following is a annotated step-by-step history of the commands that have been
performed at the podium.


First we download the teachme data:


wget http://bcc.bx.psu.edu/data/teachme.zip
unzip teachme.zip
cd teachme/






Investigate what exactly is stored in these files:


less genes.gff
cd refs/
less sc.fa






Our first task is simulate a genome and create sequencing reads from it.
What this means is that we simulate the genome of an organism, then
create a library from it and we simulate sequencing
this library via a sequencing instrument. The output of the process
will be data similar to what one would get back from a sequencing facility.


There are many sequence simulators, we will use wgsim [https://github.com/lh3/wgsim]
written by Heng Li. This code is currently hosted on GitHub:


#clone and install wgsim (mutation simulator)
git clone https://github.com/lh3/wgsim

# move to the folder
cd wgsim/

# compile the code (see the README for info)
gcc -g -O2 -Wall -o wgsim wgsim.c -lz -lm

# copy the code to a path that makes it available on the computer
cp wgsim /usr/bin/






Now lets run the simulator and generate the reads. Both the README and
just running the tool on its own produces information on the usage:


# go to refs folder and run wgsim on sc_fa to create NGS reads that contains mutations based on the sc.fa reference genome
cd ..
wgsim -N 100000 sc.fa sc_mut1.fq sc_mut2.fq > sc_mut_screen.txt

#look at mutation summary and mutated read (just sc_mut1.fq)
less sc_mut_screen.txt
less sc_mut1.fq






By default the tool creates paired-end reads (two files) but for simpliciy
we are going to use only one file.


At this point the student at the podium reorganized the files, created
a new directory called work and moved all data into that folder:


#make work directory and copy genes.gff and mutated reads
cd ..
mkdir work
mv genes.gff work/
mv refs/sc_mut* work/
cd work/






From this point on she worked off the work directory that will collect
all files. The reference will be located at the relative path ../refs/sc.fa.


We have the simulated data in sc_mut1.fq and the next goal is to generate
an alignment file from this data. We use a standard mapping protocol:


#index reference genome for alignment
bwa index ../refs/sc.fa

#perform bwa alignment
bwa aln ../refs/sc.fa sc_mut1.fq > sc_mut1.sai

#create SAM files
bwa samse ../refs/sc.fa sc_mut1.sai sc_mut1.fq > sc_mut1.sam

# always take a quick peek at what you just did, looks good!
less sc_mut1.sam






The next step is transforming the SAM file to a BAM format. The BAM file
is one of the final results of the analysis, it is a fully self
contained format that represents all the original data plus the alignment
information:


# transform the sam file into a bam file
samtools view -Sb sc_mut1.sam > tmp.bam

# sort the file and create a new file
samtools sort tmp.bam sc_mut1

# index the bam file
samtools index sc_mut1.bam






Whew! We are half way through. We now have the information on where the reads align
and each alignment contains information on wether the match is exact or
wether it has mismatches/insertions or deletions. See the CIGAR column and/or the
MD tag in the SAM file.


The next step is to create the promoter region for each gene. We start with
gene information, although one could directly obtain the promoter information
from another source.


The gene.gff file contains coordinates that we want to
transform to represent promoter regions. A promoter region is
an extension of the gene in the so called 5’ direction (upstream)
of the start coordinate.


As an example the 100 bp long
promoter region of an interval of 1000-2000 would be 900-1000 if
the region lies on the positive strand and it would be
2000-2100 if the region lies on the negative strand.


You have to be careful here though as the above applies for a zero based
representation. If the same interval 1000-2000 were specified with
a one based coordinate system the promoter coordinates would
be 900-999 if the gene were on the positive strand and 2001-2100 for the
negative strand.





Interval operations with bedtools


Bedtools offers a series commands that can alter intervals in various ways.
Moreover it can perform these operations in a strand specific and
moreover it will recognize and respect the coordinate system
that is being used.


To find the promoter regions  we will first extend each gene upstream
then we subtract the gene file from the extended file. Here is a visualization:


..........GGGGGGGGGGG........ # original gene
.....GGGGGGGGGGGGGGGG........ # extended gene
.....GGGGG................... # subtracted

# for the reverse strand the operation willbe

.....GGGGGGGGGGGG............. # original gene
.....GGGGGGGGGGGGGGGGG........ # extended gene
.................GGGGG........ # subtracted






As it happens the interval extension program needs to know how long the
chromosomes are, this is to avoid extending the intervals past the
actual chromosome size. So it needs a new tab delimited file
that contains the chromosome name and the chromosome lenghts.


This information could be extracted from the SAM file header:


# head sc_mut1.sam
@SQ SN:chrI LN:230218
@SQ SN:chrII        LN:813184
@SQ SN:chrIII       LN:316620
@SQ SN:chrIV        LN:1531933
@SQ SN:chrV LN:576874
@SQ SN:chrVI        LN:270161
@SQ SN:chrVII       LN:1090940
... more lines ...






copy this information into a separete file and edit it to keep only the
chromosome names and lenghts.


There is a second (possibly easier) way to do this is via indexing
the the fasta file and looking at the .fai file that it creates:


# fasta index the reference
samtools faidx ../refs/sc.fa

# look at the file
head ../refs/sc.fa.fai
chrI        230218  6       80      81
chrII       813184  233109  80      81
chrIII      316620  1056466 80      81
chrIV       1531933 1377051 80      81
chrV        576874  2928140 80      81
chrVI       270161  3512232 80      81
chrVII      1090940 3785779 80      81
chrVIII     562643  4890365 80      81
chrIX       439888  5460049 80      81
chrX        745751  5905442 80      81






This file too would need to be edited to remove the extra columns:


cut -f 1,2 ../refs/sc.fa.fai > genome.txt






Now let’s extend the genes, the command to do this is called slop:


#'Extend' genes.gff intervals to 1000 bases upstream positive
# strand reads / 1000 downstream negative strand reads -
# this is to include a hypothetical 1000 bases promoter
bedtools slop -l 1000 -r 0 -s -i genes.gff -g genome.txt > slop.gff

# check if it worked, look at both files
head -3 genes.gff
head -3 slop.gff






Subtract the genes from the slop files. The order of files matter!:


#subtract the rest of the genes.gff file ("genome") from the slop.gff file to keep only the promoter regions
bedtools subtract -a slop.gff -b genes.gff -s > promoter.gff

#check if it worked
head -3 genes.gff
head -3 promoter.gff






We’re almost there. We have a BAM file with alignments and a promoter file.
We just need to lay over one over the other. Now for simplicity we
convert the BAM file to an easier to interpret text file.
Moreover we will add an extra piece of information into the BED file.
Normally the score value column contains the mapping quality but
what we could also put there is the edit-distance: how many
changes were in the alignment. The -ed command instructs bedtools
to add that information:


#create BED files (containing interval information of the alingments)
bedtools bamtobed -ed -i sc_mut1_bwa.bam > sc_mut1_bwa.bed






Finally the result is near! We just need to intersect the alignments with
the promoters. The -wo flag will make rows from both files be displayed next to
one another:


# intersect the promoter.gff file (which contains
# annotation and interval information of the promoters)
# with the BED file created from the aligment to get the reads
# that mapped to the promoter regions
bedtools intersect -a promoter.gff -b sc_mut1_bwa.bed -wo > answer.txt






The answer.txt file has a lot of columns 9 from BED and 12 from SAM file. All we
need are the columns for gene name and edit distance:


cut -f 9,14 answer.txt > edits.txt






To interpret it better we can sort this file to see which promoters have the most
reads indicating edit distances. The sort needs to operate in the second column
-k 2 it must use numerical values -n and we want reverse order -r:


sort -k 2 -r edits.txt | head






Voila, the promoter regions for these genes have variation with and edit distance of 4:


ID=YPR200C  4
ID=YPR198W  4
ID=YPR193C  4
ID=YPR187W  4














  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

snp_tutorial.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Calling SNPs with Samtools


In this tutorial, we’re going to use the sorted BAM files we generated
earlier to generate a list of SNPs at which the iso-female lines we
re-sequenced differ from the reference Drosophila melanogaster
genome. We’ll be using Samtools for this, but there is other software
out there that will call SNPs and genotypes for you. We encourage you
to try them out on your own.



Getting the data


Set up your EC2 server, and mount the provided snapshot
(snap-000d346e) on /data.


Next, install Samtools. When you are installing Samtools, make sure to
install bcftools as well (which is included as part of the Samtools
package):


cd /mnt
curl -O -L http://sourceforge.net/projects/samtools/files/samtools/0.1.18/samtools-0.1.18.tar.bz2
tar xvfj samtools-0.1.18.tar.bz2
cd samtools-0.1.18
make
cp samtools /usr/local/bin
cd misc/
cp *.pl maq2sam-long maq2sam-short md5fa md5sum-lite wgsim /usr/local/bin/
cd ..
cd bcftools
cp *.pl bcftools /usr/local/bin/






Since it took a while to do map our reads to the reference genome last
time, we have the sorted bam files saved in the /data/snp_calling/
folder.


We’re going to try out two separate SNP callers, so let’s try to keep
ourselves organized:


mkdir samtools_snps
cd samtools_snps









Calling SNPs with Samtools


To generate a BCF file (which is a binary data format used to hold information about sequence variants such as SNPs), run the following lines:


samtools mpileup -uD -r 2L:100,000-150,000 -f /data/drosophila/dmel-all-chromosome-r5.37.fasta \
/data/snp_calling/RAL357_full_bwa.sorted.bam /data/snp_calling/RAL391_full_bwa.sorted.bam | \
bcftools view -bvcg - > RAL_samtools.raw.bcf






You’ll notice that this command has two parts, and we’ve used several flags in the first part of it. Here’s what they mean:


-u tells it to output into an uncompressed bcf file (rather than compressed)
-D tells it to keep read depth for each sample
-r tells it which chromosome region to call SNPs for (you can omit this if you want to do the whole genome, but in the interest of speed, we picked a 50kb region)
-f tells it that the next argument is going to be the reference genome file






The Samtools portion of this calculates our genotype likelihoods. We
then pipe the output to bcftools, which does our SNP calling based on
those likelihoods. This portion of the command has several options as
well. The -b flag tells it to output to BCF format (rather than VCF);
-c tells it to do SNP calling, and -v tells it to only output
potential variant sites (i.e., exclude monomorphic ones); and -g tells
it to call genotypes for each sample in addition to just calling
SNPs. Then we run:


bcftools view RAL_samtools.raw.bcf | vcfutils.pl varFilter -D100
   > RAL_samtools.vcf






This line converts the BCF file into a VCF file (a flat text file
rather than a binary, making it a lot easier to view), and then we
pipe that into vcfutils.pl with the varFilter -D100 option, which
filters out SNPs that had read depth higher than 100 (we don’t want to
trust SNPs at sites with super high coverage, because they might be
represent variation between variable copy number repeats, i.e., the
reads that map to this location in the reference are actually from
duplicated sites in your sample; you can–and should–change this
parameter based on the kind of coverage you have in your dataset,
e.g., -D500).


How does samtools detect SNPs? Every time a mapped read shows a
mis-match from the reference genome, it does some fancy statistics to
try and figure out whether the mis-match is because of a real SNP. It
incorporates different types of information, such as the number of
different reads that share a mis-match from the reference, the
sequence quality data, and the expected sequencing error rates, and it
essentially figures out whether it’s more likely that the observed
mis-match is due simply to a sequencing error, or because of a true
SNP.


The resulting VCF file has a lot of information about your
genotypes. For a detailed description of the VCF format, see
http://vcftools.sourceforge.net/specs.html.


Fow now, let’s look at the first few lines of the VCF file. The file
lists the chromosome, position, ID, reference allele at that
nucleotide position, and alternate alleles detected in our dataset
(across all samples). It also tells you the “Quality” – which is
basically a measure of how confident Samtools is that there really is
a SNP there (higher is better) – and whether or not that SNP passed
the quality filters. The “Info” field tells you various statistics
about each position; the information in this field can vary, but what
exactly each symbol (e.g., NS, DP, etc.) should be explained in the
file header. The “Format” field tells you what type of data are found
in the rest of the fields (there should be one additional field for
each sample that you ran through Samtools). For example, GT:GQ:DP
means that the sample fields for this position tell you the genotype,
genotype quality, and depth (coverage) of each sample that you fed
into Samtools; again, explanations of these symbol names (GT, GT, DP)
can be found in the header of your VCF file.:


less RAL_samtools.vcf









Calling SNPs with GATK’s Unified Genotyper


Now let’s try mapping our reads with another mapper, the Unified
Genotyper included as part of the Genome Analysis Toolkit
(GATK). Again, let’s try to keep our files organized:


cd /mnt
mkdir GATK_snps









Download GATK


The latest version of GATK require headers in SAM file, which are missing in
the sample datasets. Therefore, we will download older version to use in this
tutorial. You should download the latest version for you analysis.:


cd /mnt/
curl -O ftp://ftp.broadinstitute.org/pub/gsa/GenomeAnalysisTK/GenomeAnalysisTK-1.0.5974.tar.bz2
tar xvfj GenomeAnalysisTK-latest.tar.bz2






Like FastQC, this is also written in java, so let’s make sure java is installed:


java -version






Now let’s run GATK’s Unified Genotyper. The GATK people recommend a
few quality control steps before you run the SNP calling. In
particular, they recommend local re-alignment around indels, because
reads whose ends map to the location of an indel can sometimes lead to
false positive SNP calls. I’ll try to illustrate this with a
simplified example. Suppose the reference sequence is GGGGTTTT and
there’s an alternate allele with a 4-bp insertion of C’s:
GGGGCCCCTTTT. Now if a read carries the entire insertion, the aligner
can figure things out without a problem. However, if the end of the
read overlaps the insertion, you could run into problems. For
example:


Reference : GGGG----TTTT
Read 1    :    GCCCCT
Read 2    : GGGG----C
                    *






Read 1 looks fine, but read 2 is probably mis-aligned; rather than
counting the C as an insertion, which is probably better, the aligner
has placed it after the indel, making it look like there is a SNP
there. In GATK we can account for this problem by doing local
re-alignment around potential indel sites, in which we incorporate
information about all the reads in that region simultaneously, rather
than mapping each read individually. First, GATK needs to figure out
which regions are in need of re-alignment:


cd /mnt/GATK_snps

java -Xmx1g -jar /mnt/GenomeAnalysisTK-1.0.5974/GenomeAnalysisTK.jar -T RealignerTargetCreator -R /data/drosophila/dmel-all-chromosome-r5.37.fasta -I /data/snp_calling/RAL357_full_bwa.sorted.bam -o RAL357.realign.intervals -L 2L:100000-150000






And then it needs to actually do the re-alignment (this step is slow,
taking ~10 min, even for our small region):


java -Xmx4g -jar /mnt/GenomeAnalysisTK-1.0.5974/GenomeAnalysisTK.jar -I /data/snp_calling/RAL357_full_bwa.sorted.bam -R /data/drosophila/dmel-all-chromosome-r5.37.fasta -T IndelRealigner -targetIntervals RAL357.realign.intervals -o RAL357_full_bwa.realigned.bam






Now we need to do this re-alignment again with the other fly strain
that we genotyped (if you were running a large number of samples, this
is where a shell script would come in handy). You might want to run
this in the background or in a new session while you’re re-aligning
the first one:


java -Xmx1g -jar /mnt/GenomeAnalysisTK-1.0.5974/GenomeAnalysisTK.jar -T RealignerTargetCreator -R /data/drosophila/dmel-all-chromosome-r5.37.fasta -I /data/snp_calling/RAL391_full_bwa.sorted.bam -o RAL391.realign.intervals -L 2L:100000-150000

java -Xmx4g -jar /mnt/GenomeAnalysisTK-1.0.5974/GenomeAnalysisTK.jar -I /data/snp_calling/RAL391_full_bwa.sorted.bam -R /data/drosophila/dmel-all-chromosome-r5.37.fasta -T IndelRealigner -targetIntervals RAL391.realign.intervals -o RAL391_full_bwa.realigned.bam






Now we would like to run the SNP caller, but we first need to use a
package called Picard to fix a minor formatting problem in the
re-aligned BAM files before GATK’s Unified Genotyper will accept them
(these steps take a few minutes each as well):


cd /mnt
curl -O -L http://sourceforge.net/projects/picard/files/picard-tools/1.47/picard-tools-1.47.zip
unzip picard-tools-1.47.zip
cd /mnt/GATK_snps/
java -jar /mnt/picard-tools-1.47/AddOrReplaceReadGroups.jar I= RAL357_full_bwa.realigned.bam O= RAL357_full_bwa.realigned.fixed.bam SORT_ORDER=coordinate RGID=RAL357 RGLB=RAL357 RGPL=illumina RGPU=RAL357 RGSM=RAL357 CREATE_INDEX=True VALIDATION_STRINGENCY=LENIENT
java -jar /mnt/picard-tools-1.47/AddOrReplaceReadGroups.jar I= RAL391_full_bwa.realigned.bam O= RAL391_full_bwa.realigned.fixed.bam SORT_ORDER=coordinate RGID=RAL391 RGLB=RAL391 RGPL=illumina RGPU=RAL391 RGSM=RAL391 CREATE_INDEX=True VALIDATION_STRINGENCY=LENIENT






And finally we can run GATK’s SNP caller:


java -jar /mnt/GenomeAnalysisTK-1.0.5974/GenomeAnalysisTK.jar -R /data/drosophila/dmel-all-chromosome-r5.37.fasta -T UnifiedGenotyper -I RAL357_full_bwa.realigned.fixed.bam -I RAL391_full_bwa.realigned.fixed.bam -o RAL_GATK.vcf -stand_call_conf 50.0 -stand_emit_conf 10.0 -dcov 500 -L  2L:100000-150000






These parameqters are similar, but not identical, to those in Samtools. -stand_emit_conf 10.0 means that it won’t report any potential SNPs with a quality below 10.0; but unless they meet the quality threshold set by -stand_call_conf (50.0, in this case), they will be listed as failing the quality filter. -dcov 500 means that any site that has more than 500x coverage, the genotype caller will only use 500 randomly selected reads (for computational efficiency).


Keep in mind that, at this point, indel calling in GATK’s Unified
Genotyper does not seem to be well supported. For that, you may want
to stick with Samtools or other software for now.


Another approach you could take is to just do the local re-alignment
with GATK, but then do your SNP calling using Samtools on the locally
re-aligned BAM files.:


samtools mpileup -uD -r 2L:100,000-150,000 -f /data/drosophila/dmel-all-chromosome-r5.37.fasta RAL357_full_bwa.realigned.fixed.bam RAL391_full_bwa.realigned.fixed.bam | bcftools view -bvcg - > RAL_samtools_fixed.raw.bcf
bcftools view RAL_samtools_fixed.raw.bcf | vcfutils.pl varFilter -D100 > RAL_samtools_fixed.vcf









Comparing output


Now say you want to count how many SNPs each SNP calling approach
found. You could do this pretty simply using grep on the vcf file. In
this case, we only looked at a region on chromosome 2L, and the
chromosome is the first thing listed about each SNP. So we can search
for and then count every line in the vcf file that begins with the
text ‘2L’. To use grep to search for text at the beginning of a line,
you use the ^ symbol. Once we find the lines in the vcf file that
describe our SNPs, we’re going to pipe them all to the wc command
(with the -l flag) to count how many of them there are:


cd /mnt
grep '^2L' samtools_snps/RAL_samtools.vcf | wc -l
grep '^2L' GATK_snps/RAL_GATK.vcf | wc -l
grep '^2L' GATK_snps/RAL_samtools_fixed.vcf | wc -l






Which approach detected the most SNPs in this region?


There is a package called vcftools that has all sorts of utilities for
working with VCF files. I won’t go over it here, but consult the
project’s website and documentation at
http://vcftools.sourceforge.net/ if you are interested. For now,
compare the SNPs that each SNP caller detected by viewing the VCF
files using less:


less samtools_snps/RAL_samtools.vcf
less GATK_snps/RAL_GATK.vcf
less GATK_snps/RAL_samtools_fixed.vcf






Another exercise:


In the snp_calling directory, you will also find BAM files generated
by aligning the same set of reads to the same reference genome for one
of the two fly lines (RAL357) using bowtie rather than bwa. Use
Samtools to call SNPs and generate a VCF file on the bowtie alignment
and compare it to the VCF file you got from the bwa alignment.










  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

rnaseq_bwa.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Mapping to the transcriptome with BWA


In this tutorial, we’ll begin by mapping reads from an RNA-seq study involving Drosophila melanogaster to a reference transcriptome. First, make sure you have BWA and SAMTools installed. Next, you will need to download the reference transcriptome:


mkdir bwa_transcriptome
cd bwa_transcriptome
curl -O -L ftp://ftp.flybase.net/releases/current/dmel_r5.51/fasta/dmel-all-transcript-r5.51.fasta.gz
gunzip dmel-all-transcript-r5.51.fasta.gz






How many transcripts are encoded in this file? Let’s look at the file manually first:


less dmel-all-transcript-r5.51.fasta






Notice the fasta format; each line beginning with a > is a new sequence, followed by another line (or multiple lines) containing the sequence itself. If we want to count how many transcripts are in the file, we can just count the number of lines that begin with >


grep '>' | wc -l






You should see 28826.


Next, we need to prepare the file for use with BWA. The first step is to index it:


bwa index dmel-all-transcript-r5.51.fasta






Next, we can map our paired-end sequence reads to the transcriptome. To make our code a little more readable and flexible, we’ll use shell variables in place of the actual file names. In this case, let’s first specify what the values of those variables should be:


reference=dmel-all-transcript-r5.51.fasta
reads_1=OREf_SAMm_vg1_CTTGTA_L005_R1_001.fastq
reads_2=OREf_SAMm_vg1_CTTGTA_L005_R2_001.fastq
output=vg_1






Now we can use these variable names in our mapping commands. The advantage here is that we can just change the variables later on if we want to apply the same pipeline to a new set of samples (which we do):


bwa mem ${reference} ${reads_1} ${reads_2} > ${output}.sam






This command will output a file named vg_1.sam in the current working directory. Next, we want to use SAMTools to convert it to a BAM, and then sort and index it:


samtools import ${reference}.fai ${output}.sam ${output}.unsorted.bam
samtools sort ${output}.unsorted.bam ${output}
samtools index ${output}.bam






Next, you can use your existing knowledge to view the mappings, plot the distribution of mismatch positions, etc.








  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

installing-dropbox.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Installing Dropbox on your EC2 machine


IMPORTANT: Dropbox will sync everything you have to your EC2 machine, so
if you are already using Dropbox for a lot of stuff, you might want to
create a separate Dropbox account just for the course.


Start at the login prompt on your EC2 machine:


cd /root






Then, grab the latest dropbox installation package for Linux:


wget -O dropbox.tar.gz "http://www.dropbox.com/download/?plat=lnx.x86_64"






Unpack it:


tar -xvzf dropbox.tar.gz






Make the Dropbox directory on /mnt and link it in:


mkdir /mnt/Dropbox
ln -fs /mnt/Dropbox /root






and then run it:


~/.dropbox-dist/dropboxd &






When you get a message saying “this client is not linked to any account”,
copy/paste the URL into browser and go log in.  Voila!








  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

interval-analysis-tutorial.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Interval Analysis Tutorial



Requirements


Install Bedtools:


# go to the code installation directory
cd /mnt

# download the code
wget https://bedtools.googlecode.com/files/BEDTools.v2.17.0.tar.gz

# unpack it
tar zxvf BEDTools.v2.17.0.tar.gz

# move into the tool folder
cd bedtools-2.17.0/

# compile the program
make

# copy the program to be universally accessible
cp bin/bedtools /usr/local/bin/






Prepare the Dropbox work folders:


# this will switch back to
# the home directory
cd

# create a new work directory
mkdir Dropbox/intervals

# switch to that directory
cd Dropbox/intervals






You can now create files on your local Dropbox folder and once the file are
saved they will appear on the remote (Amazon cloud) computer.


With the editor of your choice create a fasta/fastq file in your Dropbox folder that contains the following:



		an exact subsequence from the drosophila genome


		a subsequence from the drosophila genome with one mismatch (or any other variation)


		a spliced junction file





Now the pipeline to generate a mapping file will look like this. You can also put this into
a separate file and re-run it via the shell command:


# align the reads
bwa aln /mnt/dmel-all-chromosome-r5.37.fasta read1.fq > read1.sai

# format the alignment as a SAM file
bwa samse /mnt/dmel-all-chromosome-r5.37.fasta read1.sai read1.fq > temp.sam

# convert sam to bam format, then sort and index it
samtools view -Sb temp.sam > temp.bam
samtools sort -f temp.bam read1.bam
samtools index read1.bam

# delete the temporary SAM files
#rm temp.sam temp.bam

# display the SAM file with the header
samtools view -h read1.bam






Add other sequences, modify the input, verify and study the output.
Understanding the SAM format is an fundamental requirement for most applications.


Novelty: The bwa MEM (Maximal Exact Matches) algorithm can produce local
maximal alignments. Modify your query sequence to the extent that
the normal aln method does not match then try the MEM method:


bwa mem /mnt/dmel-all-chromosome-r5.37.fasta read1.fa > results.sam






(it can do spliced alignments!)


Now let’s investigate your previous drosophila SAM file. First link it into the current
folder. This creates a shortcut:


# create a symbolic link (shortcut) to the file
ln -s /mnt/RAL357_bwa.sorted.bam ral.bam

# index the file
samtools index ral.bam

# view your file
samtools view ral.bam | more






SamTools is a phenomenal tool that allows one to filter and view any part of
the file at very high speeds, this shows only the region of 1-10000 of the XHet
chromosome:


samtools view ral.bam XHet:1-10000






Counting how much data falls in a certain range is so common it has its own flag, -c


samtools view -c ral.bam XHet:1-10000






Filtering by flags at: http://picard.sourceforge.net/explain-flags.html


The -f flag keeps reads with a certain property, the -F flag removes reads
with a certain property.


Task: find out if the for chromosome 2R and the first one million
bases the number of reads on the positive strand are reasonably
equal to the number of reads on the negative strand.



Interval Operations


Visit the FlyBase http://flybase.org/ and download the gene annotations for the
drosphila genome as a GFF file and put it into your Dropbox folder:


# download a single annotation file
wget ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/current/gff/dmel-3RHet-r5.51.gff.gz

# decompress the file that was downloaded
gunzip dmel-3RHet-r5.51.gff.gz

# count the number of line in the file
wc -l dmel-3RHet-r5.51.gff

# this file contains all annotations but we want to filter
# for lines that are annotated as gene
# but we can't just directly match for the word gene as this
# word may be present in other context
# we need to search for lines that match
# the word FlyBase \tab gene
# below the capital \W indicates a whitespace character

grep -E 'FlyBase\Wgene' dmel-3RHet-r5.51.gff > genes.gff






Previously we have created a SAM alignment file and you can now
have combine it with genes via the bedtools:


bedtools intersect -a ral.bed -b genes.gff -wo > results.txt
















  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

bwa-tutorial.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Mapping reads with bwa and bowtie


In this tutorial, we’re going to take a set of Illumina reads from an
inbred Drosophila melanogaster line, and map them back to the
reference genome. (After these steps, we could do things like generate
a list of SNPs at which this line differs from the reference strain,
or generate a genome sequence for this fly strain, but we’ll get to
that later on.) We are also going to use two different (but popular)
mapping tools, bwa and bowtie. Among their differences is that bowtie
(while smokin’ fast) does not deal with “gapped” alignments, i.e. it
does not handle insertion/deletions well.



Getting the reads


The data we’re using in this tutorial is stored as a snapshot with
Amazon. We need to make a disk (technically, a “volume”) out of this
snapshot and then mount it on our instance, which will make it very
easy to access our data.


Log into Amazon Web Services, and click on “Snapshots” at the
left. Where it says “Viewing:”, click on the drop-down box and select
“All Snapshots”. In the search box, paste the name of the snapshot
that you want to make a volume from (that’s snap-000d346e in this
case). When the snapshot shows up in the list, select it and then
click the “Create Volume” button. In the box that pops up, make sure
to pick a specific availability zone for both the volume and the EC2
instance to be run in – e.g. ‘us-east-1c’ – you’ll need to have your
volume in the same availability zone as your instance, or else you
won’t be able to attach the volume to the instance!  For Volume type,
specify “Standard”.  Then click “Yes, Create.”


Now go launch your AMI instance. But when it asks you which
availability zone to launch it in, change the selection from “No
preference” to whatever availability zone your volume is in. Now you
need to attach your volume. Click on “Volumes” in the bar at the left,
and select the one that you just created from the snapshot. Click on
the “Attach Volume” button, and then select your instance. In the box
that pops up, type “sdf” (minus the quotes).  (This should be the
default.)


Now it’s time to connect to your instance using ssh. Once you are
connected, we’ll mount the drive to the /data directory. When you
first launch your instance, you’ll need to create it.


mkdir /data






Next, run the following line:


mount -o ro /dev/xvdf /data






And you should see a bunch o’ stuff there:


cd /data
ls drosophila/RAL*.fastq






We’re going to be using the reads in the two smaller files,
RAL357_1.fastq and RAL357_2.fastq.





Getting the Drosophila genome


Now, we need to download the Drosophila genome.  Go to the working
directory (the /data directory is read-only):


cd /mnt






For this example, you’ll also need the Drosophila reference genome:


curl -O ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.37_FB2011_05/fasta/dmel-all-chromosome-r5.37.fasta.gz
gunzip -f dmel-all-chromosome-r5.37.fasta.gz
md5sum dmel-all-chromosome-r5.37.fasta






This last command computes what’s called a “checksum” of the file, to
ensure that you have the complete and correct genome; it should give
you this as output.



0e0b37ddfb95136e6f6013c9ea94cc48  dmel-all-chromosome-r5.37.fasta






Installing and running bwa


To actually do the mapping, we need to download and install bwa.


First we are going to grab the source files for bwa from sourceforge,
using curl. It is important to know that we need to specify a few
flags to let the program know that we want to save the output to a
file (-o) instead of the default (print it on the screen) and that
curl should follow relative hyperlinks (-L), to deal with redirection
of the file site (or else curl won’t work with sourceforge).:


cd /mnt
curl -L -o bwa-0.7.5.tar.bz2 http://sourceforge.net/projects/bio-bwa/files/bwa-0.7.5a.tar.bz2/download






Now we want to uncompress the tarball file using “tar”. x extracts, v
is verbose (telling you what it is doing), f skips prompting for each
individual file, and j tells it to unzip .bz2 files.:


tar xvfj bwa-0.7.5a.tar.bz2
cd bwa-0.7.5a






The make command calls a program that helps to automate the compiling
process for the program:


make






(This will take a while.)


Copy the executable for bwa to a directory for binaries which is in
your shell search path:


cp bwa /usr/local/bin






Now there are several steps involved in mapping our sequence reads and
getting the output into a usable form. First we need to tell bwa to
make an index of the reference genome; this will take a few minutes:


cd /mnt
bwa index dmel-all-chromosome-r5.37.fasta






Next, we do the actual mapping. These were paired-end reads, which
means that for each DNA fragment, we have sequence data from both
ends. The sequences are therefore stored in two separate files (one
for the data from each end), so we have two mapping steps to
perform. For now, we’ll use bwa’s default settings. The files you’ll
be running this on are datasets that have been trimmed down to just
the first 1 million sequence reads to speed things up, but at the end
you’ll be able to work with the final product from an analysis of the
full dataset that we ran earlier (some of these steps take upwards of
an hour on the full dataset, but just a couple minutes on the trimmed
dataset). Run:


bwa aln dmel-all-chromosome-r5.37.fasta /data/drosophila/RAL357_1.fastq > RAL357_1.sai
bwa aln dmel-all-chromosome-r5.37.fasta /data/drosophila/RAL357_2.fastq > RAL357_2.sai






These .sai files aren’t very useful to us, so we need to convert them
into SAM files. In this step, bwa takes the information from the two
separate ends of each sequence and combines everything
together. Here’s how you do it (this may take around 10 minutes):


bwa sampe dmel-all-chromosome-r5.37.fasta RAL357_1.sai RAL357_2.sai /data/drosophila/RAL357_1.fastq /data/drosophila/RAL357_2.fastq > RAL357_bwa.sam






The SAM file is technically human-readable; take a look at it with:


more RAL357_bwa.sam






...but it’s not very easy to understand (if you are really curious
about the SAM format, there is a 12-page manual at
http://samtools.sourceforge.net/SAM1.pdf). For now we’ll use bowtie to
map the same reads, and we’ll use another tool to visualize these
mappings in a more intuitive way.





bwa options


(There’s no need to run these right now, but we provide the commands
for later.)


There are several options you can configure in bwa. Probably one of
the most important is how many mismatches you will allow between a
read and a potential mapping location for that location to be
considered a match. The default is 4% of the read length, but you can
set this to be either another proportion of the read length, or a
fixed integer. For example, if you ran:


bwa aln -n 4 dmel-all-chromosome-r5.37.fasta /data/drosophila/RAL357_1.fastq > RAL357_1.sai






This would do almost the same thing as above, except this time, all
locations in the reference genome that contain four or fewer
mismatches to a given sequence read would be considered a match to
that read.


Alternatively, you could do:


bwa aln -n 0.01 dmel-all-chromosome-r5.37.fasta /data/drosophila/RAL357_1.fastq > RAL357_1.sai






This would only allow reads to be mapped to locations at which the
reference genome differs by 1% or less from a given read fragment.


If you want to speed things up, you can tell it to run the alignment
on multiple threads at once (this will only work if your computer has
a multi-core processor, which our Amazon image does). To do so, use
the -t option to specify the number of threads. For example, the
following line would run in two simultaneous threads:


bwa aln -t 2 dmel-all-chromosome-r5.37.fasta /data/drosophila/RAL357_1.fastq > RAL357_1.sai






bwa can also handle single-end reads. The only difference is that you
would use samse instead of sampe to generate your SAM file:


bwa samse dmel-all-chromosome-r5.37.fasta RAL357_1.sai /data/drosophila/RAL357_1.fastq > RAL357_1.sam









Aligning reads with bowtie


(Note: For simplicity we are going to put all of the bowtie related
files into the same directory. For your own work, you may want to
organize your file structure better than we have).


Let’s get bowtie from Sourceforge:


curl -O -L http://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.7/bowtie-0.12.7-linux-x86_64.zip






unzip the file, and create a directory for bowtie. In this case, the
program is precompiled so it comes as a binary executable:


unzip bowtie-0.12.7-linux-x86_64.zip






Change directory:


cd bowtie-0.12.7






Copy the bowtie files to a directory in you shell search path, and then move back to the parent directory (/data/drosophila):


cp bowtie bowtie-build bowtie-inspect /usr/local/bin






At this point we need to index the Drosophila genome so that bowtie
can map the reads to it.  You can either do this yourself (~7
minutes):


cd /mnt
bowtie-build dmel-all-chromosome-r5.37.fasta drosophila_bowtie






OR you can just copy over one we’ve already built for you:


cp /data/drosophila/drosophila_bowtie/drosophila_bowtie.* /mnt






Now we get to map! We are going to use the default options for bowtie
for the moment.  Let’s go through this. there are a couple of flags
that we have set, since We have paired end reads for these samples,
and multiple processors. The general format for bowtie is (don’t run
this):


bowtie indexFile fastqFile outputFile






However we have some more details we want to include, so there are a
couple of flags that we have to set.  -S means that we want the output
in SAM format.  -p 2 is for multithreading (using more than one
processor). In this case we have two to use.  -1 -2 tells bowtie that
these are paired end reads (the .fastq), and specifies which one is
which.


This should take 35-40 minutes to run on the full dataset so we’ll run
it on a trimmed version (should take about 3 minutes; later we’ll give
you pre-computed results for the full set.):


bowtie -S -p 2 drosophila_bowtie -1 /data/drosophila/RAL357_1.fastq -2 /data/drosophila/RAL357_2.fastq RAL357_bowtie.sam






You may see warning messages like:


Warning: Exhausted best-first chunk memory for read SRR018286.1830915 USI-EAS034_2_PE_FC304DDAAXX:8:21:450:1640 length=45/1 (patid 1830914); skipping read






We will talk about some options you can set to deal with this.


Note: The bowtie manual can be found here:



http://bowtie-bio.sourceforge.net/manual.shtml



Some additional useful arguments/options (at least for me):


-m  # Suppresses all alignments for a particular read if more than m reportable alignments exist.

-v  # no more than v mismatches in the entire length of the read

-n -l # max number of mismatches in the high quality "seed", which is the the first l base pairs of a read.

-chunkmbs  # number of mb of memory a thread is given to store path. Useful when you get warnings like above

--best # make Bowtie "guarantee" that reported singleton alignments are "best" given the options

--tryhard  # try  hard to find valid alignments, when they exit. VERY SLOW.









Processing the BWA and Bowtie output for use with Samtools


Even the SAM file isn’t very useful unless we can get it into a
program that generates more readable output or lets us visualize
things in a more intuitive way. For now, we’ll get the output into a
sorted BAM file so we can look at it using Samtools later.


Download and install Samtools:


cd /root
curl -O -L http://sourceforge.net/projects/samtools/files/samtools/0.1.19/samtools-0.1.19.tar.bz2
tar xvfj samtools-0.1.19.tar.bz2
cd samtools-0.1.19
make
cp samtools /usr/local/bin
cd misc/
cp *.pl maq2sam-long maq2sam-short md5fa md5sum-lite wgsim /usr/local/bin/
cd /mnt






Like bwa, Samtools also requires us to go through several steps before
we have our data in usable form. First, we need to have Samtools
generate its own index of the reference genome:


samtools faidx dmel-all-chromosome-r5.37.fasta






Next, we need to convert the SAM file into a BAM file. (A BAM file is
just a binary version of a SAM file.):


samtools import dmel-all-chromosome-r5.37.fasta.fai RAL357_bwa.sam RAL357_bwa.bam






Now, we need to sort the BAM file:


samtools sort RAL357_bwa.bam RAL357_bwa.sorted






And last, we need Samtools to index the BAM file:


samtools index RAL357_bwa.sorted.bam






Let us do this again for the bowtie output:


samtools import dmel-all-chromosome-r5.37.fasta.fai RAL357_bowtie.sam RAL357_bowtie.bam






Now, we need to sort the BAM file (also slow):


samtools sort RAL357_bowtie.bam RAL357_bowtie.sorted






And last, we need Samtools to index the BAM file:


samtools index RAL357_bowtie.sorted.bam






All done! Now we can use the sorted BAM file in Samtools to visualize
our mappings, generate lists of SNPs, and call consensus
sequences. We’ll get to all of that later on today and in the rest of
the course.





Viewing the BWA and Bowtie output with TView


Now that we’ve generated the files, we can view the output with
TView. We’ll compare two different sorted:


samtools tview RAL357_bwa.sorted.bam dmel-all-chromosome-r5.37.fasta






Now open an additional terminal window, and load the Bowtie mapping
file there as well:


cd /mnt
samtools tview RAL357_bowtie.sorted.bam dmel-all-chromosome-r5.37.fasta






To view the tview help, type ‘?’.  You can go see one particular mapping
location by typing ‘g’ and then enter ‘3L:23378032’ to go that location
in the SAM file.



Some other data and exercises


For Day 2 – Running BLAST and other things at the command line, we did a lot of work with some E. coli data.
Try using BWA to map the E. coli data to the reference genome, which
is available at this URL:


https://s3.amazonaws.com/public.ged.msu.edu/ecoliMG1655.fa.gz






Hint: use curl to download it, gunzip to uncompress it, bwa index or
bowtie-build to index it, and then apply the above BAM stuff to it.
Then use tview to visualize.












  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

log-in-with-ssh-mac.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Logging into your new instance “in the cloud” (Mac version)


OK, so you’ve created a running computer.  How do you get to it?


The main thing you’ll need is the network name of your new computer.
To retrieve this, go to the instance view and click on the instance,
and find the “Public DNS”.  This is the public name of your computer
on the Internet.


Copy this name, and connect to that computer with ssh under the username
‘root’, as follows.


First, find your private key file; it’s the .pem file you downloaded
when starting up your EC2 instance.  It should be in your Downloads
folder.  Move it onto your desktop and rename it to ‘amazon.pem’.


Next, start Terminal (in Applications... Utilities...) and type:


%% chmod og-rwx ~/Desktop/amazon.pem






to set the permissions on the private key file to “closed to all evildoers”.


Then type:


%% ssh -i ~/Desktop/amazon.pem root@ec2-???-???-???-???.compute-1.amazonaws.com






(but you have to replace the stuff after the ‘@’ sign with the name of the host).


Here, you’re logging in as user ‘root’ to the machine
‘ec2-174-129-122-189.compute-1.amazonaws.com’ using the authentication
key located in ‘amazon.pem’ on your Desktop.








  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

day2.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Day 2 – Running BLAST and other things at the command line


Before following the procedures below, go through the process of
starting up an ec2 instance and logging in – see Day 1 - Getting started with Amazon for
details.  Make sure you follow the Dropbox instructions.


The lecture will start at 9:30, the first tutorial
(Running command-line BLAST) will start at 10:45, and the
second tutorial will start at 1:30.




		Running command-line BLAST
		Install BLAST


		Running BLAST


		Converting BLAST output into CSV


		Summing up








		Evaluating the quality of your short reads, and trimming them
		Packages to install


		Getting some data


		Trimming and quality evaluation of your sequences



















  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

day1.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Day 1 - Getting started with Amazon




		Start up an EC2 instance
		The launch wizard


		“Create a new instance” page 1


		“Create a new instance” page 2


		Wait for your instance to be running








		Logging into your new instance “in the cloud” (Windows version)
		Generate a ppk file from your pem file


		Logging into your EC2 instance with Putty








		Logging into your new instance “in the cloud” (Mac version)


		Installing Dropbox on your EC2 machine








IPython Notebook access


You can access IPython Notebook on your computer by going to
https:// + YOUR MACHINE NAME, and then entering ‘beacon’ as the password.










  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

seqtk_tools.html


    
      Navigation


      
        		
          index


        		angus 5.0 documentation »

 
      


    


    
      
          
            
  
  
Using seqtk to trim and process reads at an insanely high speed


seqtk was developed by Heng Li and is available from his GitHub page: https://github.com/lh3/seqtk



Installation


To obtain the code you will need to have git installed and you need to clone the seqtk url:


# download with github
git clone git://github.com/lh3/seqtk.git






Switch to the seqtk directory and make it:


cd seqtk
make
cp seqtk /usr/local/bin






We will use E.coli data in snapshot snap-000d346e in this tutorials.
Create a volume from the snapshot and attach it to the instance.:


mkdir /ebs/
mount /dev/xvdf /ebs









Basic Usage


For just about all tools the input can be fasta, fastq file, may be
gzipped or not, will unzip on the fly.



# extracts a random sample
seqtk sample


# apply a seed to extract the same reads from two, paired end files
seqtk -s 10 sample


# trim reads with the modified Mott trimming algorithm
seqtk trimfq ...






The algorithm is described on this page: `http://www.phrap.org/phredphrap/phred.html`__. Scroll down to the Algorithm section for details.


Beyond this usage there are other interesting features - you can subtract subsequences from file (say you want to extract a certain part of your
reference genome) using seqtk.





Tools


Using your Amazon EC2 instance:


cd /mnt






To see a list of tools:


seqtk






Extracts a random sample:


# sample 1000 reads from a fastq file
seqtk sample /ebs/ecoli/SRR001666_1.fastq.gz 1000 > SRR001666_1_1000.fastq






Convert fastq to fasta:


seqtk seq -A /ebs/ecoli/SRR001666_1.fastq.gz > sample.fa






Apply a seed to extract the same reads from two, paired end files:


seqtk sample -s 10 /ebs/ecoli/SRR001666_1.fastq.gz 1000 > SRR001666_1_1000.fastq
seqtk sample -s 10 /ebs/ecoli/SRR001666_2.fastq.gz 1000 > SRR001666_2_1000.fastq






Trim reads with the modified Mott trimming algorithm:


# trim with default error threshold = 0.05
seqtk trimfq /ebs/ecoli/SRR001666_1.fastq.gz > timmed.fq

# trim with an error threshold = 0.01
seqtk trimfq -q 0.01 /ebs/ecoli/SRR001666_1.fastq.gz > timmed.fq

# trim the first 3 bases and the last 5 bases
seqtk trimfq -b 3 -e 5 /ebs/ecoli/SRR001666_1.fastq.gz > timmed.fq














  




Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          

      

      

    



    
        © Copyright 2010 onwards, C. Titus Brown et al..
      Created using Sphinx 1.2.2.
    








  

_images/ec2-instance-running.png
EC2 Dashboard

Launch Instance | Actions v

c & 0

Events «

Tgs Viewing: [ Allinstances

+) (Alinstance Types

] (Search

D}

1€ ¢ 1o2or2msunces > 3]

INSTANGES O Name ™ instance

RootDevice | Type

Status Checks | Alarm Status  Monitoring

Security Groups | Key Pair Name Vi

Instances O Elieh | i@ rd6dtiebd

ami-999d4910

ebs

milarge

Loading... basic

default el pe

Spot Requests
Reserved Instances

oo

ami-999d4910

ebs

— e 5

default Adam pe

IMAGES

AMis
Bunde Tasks

ELASTIC BLOCK STORE
Volumes
Snapshots.

NETWORK & SECURITY
Seaurity Groups
Elastic IPs
Placement Groups
Load Balancers

Key Pairs
Network Interfaces

@ EC2 Instance: Adam

i-f6897293) @

AmMr:

Starcluster-base-ubuntu-11.10-x86_64 (ami-99949f0)

Zone:

us-east-1c

Alarm Status:

Security Groups:

default. view rules





_static/minus.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/ajax-loader.gif





_static/plus.png





_static/down.png





_static/comment-close.png





_static/up.png





_images/win-putty-2.png
R PuTTY Configuration

e

‘Optons contrling SSH authentcation

[T Bypass authentication entirely (SSH-2 only)
Display pre-authentication barner (SSH-2 only)
Authentication methods

tempt authentication using Pageant

[T Attempt TIS or CryptoCard auth (SSH-1)

tempt "keyboard interactive” auth (S5H-2)
Authentication parameters.

] Alow agent forwarting

[C] Alow attempted changes of usemame in SSH-2
Private






_static/up-pressed.png





_static/down-pressed.png





_images/win-putty-3.png
Cogin as: zoocl






_images/win-puttygen.png





_images/win-puttygen-4.png
18 PuTTY Key Generator . |

File Key Conversions Help
Key
Pubic key for pasting nto OpenSSH authorzed_keys fie:
shsa -
PAABINGAC yC2EAAMAD KA AAABCCOLGZICH 24N DLsSSTR ! |
WaH72t+3anZc+/0p YXaUBadHy314gEQpeKgORINbIY hnihchOj
6120 7rlomAIGkM3ZGLySSgadp
“AQRIYW 73k TLWt0n3cwiuyPoA2pygl6y47VBvanimVUEF AXMErSOngke 1h/i35.CDZ2 ~
Key fingerpint sshisa 2048 c7cd 91id o7 d3cblecT o722 W 87,0841
Key comment: imported-opensshkey
Key passphrase:
Confim passphrase:
Adtons

Generate a publc/private key pair

Load an exising pivate key fie.
Save the generated key

Parameters

Type of key to generste:
SSH1 (RSA)

Numberof bits in 2 generated key:






