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Assembly vs mapping

* No reference needed, for assembly!
> De novo genomes, transcriptomes...

e But:
> Scales poorly; need a much bigger computer.
> Biology gets in the way (repeats!)
> Need higher coverage

e But but;

o Often your reference isn’t that great, so assembly
may actually be the best way to go.



Assembly

It was the best of times, it was the wor
, it was the worst of times, it was the
isdom, it was the age of foolishness
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It was the best of times, it was the worst of times, it was
the age of wisdom, it was the age of foolishness

...but for lots and lots of fragments!
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Assemble based on word overlaps:

the quick brown fox jumped
jumped over the lazy dog
the quick brown fox jumped over the lazy dog

Repeats do cause problems:

my chemical romance: na na na

na na na, batman!



Shotgun sequencing & assembly

Randomly fragment & sequence from DNA;
reassemble computationally.

contig 1 contig 2
consensus [
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AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCITATCAACCGATCCCCCOCTACCTICTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu)



Assembly — no subdivision!

Assembly is inherently an all by all process.
There is no good way to subdivide the
reads without potentially missing a key

connection




Short-read assembly

e Short-read assembly is problematic

* Relies on very deep coverage, ruthless
read trimming, paired ends.

contig 1 contig 2
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AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTI

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTI
AAAACTCOCCTGCTITATCAACCGATCCCCCOCTACCTTICTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu)



Short read lengths are hard.
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Figure 3. Percentage of the E.coli genome covered by contigs greater than a
threshold length as a function of read length.

Whiteford et al., Nuc.Acid Res, 2005



Short read lengths are hard.
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Conclusion: even with
a read length of 200, the
E. coli genome cannot be
assembled completely.

Why?
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Short read lengths are hard.
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Conclusion: even with
a read length of 200, the
E. coli genome cannot be
assembled completely.

Why? REPEATS.

This is why paired-end
sequencing is so important
for assembly.
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threshold length as a function of read length.
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Four main challenges for de novo
sequencing.

Repeats.
* Low coverage.
Errors

These introduce breaks in the
construction of contigs.

Variation in coverage — transcriptomes and metagenomes, as
well as amplified genomic.

This challenges the assembler to distinguish between erroneous
connections (e.g. repeats) and real connections.



Repeats

e Overlaps don’t place sequences uniquely
when there are repeats present.

contig 1 contig 2
consensus [
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AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTI

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCTITATCAACCGATCCCCCGCTACCTTICTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu)



Coverage

Easy calculation:
(# reads x avg read length) / genome size

S0, for haploid human genome:

30m reads x 100 bp = 3 bn



Coverage

* “Ix” doesn’t mean every DNA sequence
is read once.

* [t means that, if sampling were systematic,
it would be.

» Sampling isn’t systematic, it’s random!



Actual coverage varies widely from
the average, for low avg coverage

10x coverage of 1mb - distribution
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Two basic assembly approaches

* Overlap/layout/consensus
* De Bruijn k-mer graphs

The former is used for long reads, esp all
Sanger-based assemblies. The latter is
used because of memory efficiency.



Overlap/layout/consensus

Essentially,

I. Calculate all overlaps

2. Cluster based on overlap.

3. Do a multiple sequence alignment

contig 1 contig 2
onsensus [
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AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTI
AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCITATCAACCGATCCCCCGCTACCTICTACAGCCATCATTT

UMD assembly primer (cbcb.umd.edu)



K-mers

Break reads (of any length) down into multiple
overlapping words of fixed length k.

ATGGACCAGATGACAC (k=12) =>

ATGGACCAGATG
TGGACCAGATGA
GGACCAGATGAC
GACCAGATGACA
ACCAGATGACAC




K-mers — what k to use?

Table TA. Mean number of false placements of K-mers on the
genome

Escherichia Saccharomyces Arabidopsis Homo

K coli cerevisiae thaliana sapiens
200 0.063 0.26 0.053 0.18
160 0.068 0.31 0.064 0.49
120 0.074 0.39 0.086 1.7

80 0.082 0.49 0.15 7.2

60 0.088 0.58 0.27 18

50 0.091 0.63 0.39 32

40 0.095 0.69 0.65 78

30 0.11 0.77 1.5 330

20 0.15 1.0 5.7 2100

10 18 63.8 880 40,000

Butler et al., Genome Res, 2009



K-mers — what k to use?

Table 1B. Fraction of K-mers having a unique placement on the
genome

K E. coli (%) S. cerevisiae (%) A. thaliana (%) H. sapiens (%)

200 98.5 95.9 97.4 97.6
160 98.3 95.6 97.1 97.2
120 98.2 95.2 96.6 96.6
80 98.0 94.7 95.4 95.2
60 97.8 94.4 94.4 93.1
50 97.7 94.2 93.4 91.2
40 97.6 93.9 92.2 88.3
30 97.4 93.5 90.4 83.4
20 97.0 92.9 86.5 71.8
10 0.0 0.0 0.0 0.0

Butler et al., Genome Res, 2009



Big genomes are problematic

Coverage by
Genome Reference Component Edge Ambiguities Coverage perfect edges
Species Ploidy size (kb) N50 (kb) N50 (kb) NSO (kb) per megabase (%) 210 kb (%)

C. jejuni 1 1800 1800 1800 1800 0.0 100.0 100.0
E. coli 1 4600 4600 4600 4600 0.0 100.0 100.0
B. thailandensis 1 6700 3800 1800 890 2.7 99.8 99.5
E. gossypii 1 8700 1500 1500 890 2.6 100.0 99.9
S. cerevisiae 1 12,000 920 810 290 28.7 98.7 94.9
S. pombe 1 13,000 4500 1400 500 19.1 98.8 97.5
P. stipitis 1 15,000 1800 900 700 8.6 97.9 96.3
C. neoformans 1 19,000 1400 810 770 4.5 96.4 93.4
Y. lipolytica 1 21,000 3600 2200 290 6.2 99.1 98.6
Neurospora crassa 1 39,000 660 640 90 17.4 97.0 92.5
H. sapiens region 2 10,000 10,000 490 2 68.2 97.3 0.2

Butler et al., Genome Res, 2009



Choice of k affects apparent coverage

%1000_ — k=20 counts , .
a;, — k=26 counts
S ; — k=32 counts
B | per-base coverage
<
= 600} .
e
[4})
£
X 400} :
o
(7)]
[
(7)]
S 200} |
S
H#
0 L . ]
0 50 100 150 200 250

Coverage



K-mer graphs - overlaps

aaccgg

(a) ccggtt
(b) aacc | Jlaccg O{ﬂ—o cqgt . ggtt |
(c) 4accggtt

J.R. Miller et al./ Genomics (2010)



K-mer graph (k=14)

l ATCCAGTAGGACCACTTGACAGGCGA |

GEISITTEDY 0 00:0,0,0,0,0,0,0,0,0,0

Each node represents a [4-mer;
Links between each node are |3-mer overlaps



K-mer graph (k=14)

I ATCCAGTAGGACCACTTGACAGGCGA |
I ATCCAGTAGGACCACTTGACGCGGAT |

( ATCCAGTAGGACCA |—>.» @»@
ORORORORONG

Branches in the graph represent partially overlapping sequences.




K-mer graph (k=14)

| ATCCAGTAGGACCACTTGACAGGCGA l
| ATCCAGTAGGACCACTTGACGGGCGA l

( ATCCAGTAGGACCA j—»'» @@»
| 000,00

Single nucleotide variations cause long branches



K-mer graph (k=14)

| ATCCAGTAGGACCACTTGACAGGCGATTGACG |
| ATCCAGTAGGACCAGTTGACAGGCGATTGACG |

~AHOHDHHHO-

ATCCAGTAGGACCA ’@@ @

Single nucleotide variations cause long branches;
They don’t rejoin quickly.



Choice of k affects apparent coverage
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K-mer graphs - branching

CCGGAG
aaccgg
(a) ccggtt
(b) aacc [ accg [ ccgg % cggt —* ggtt

\ Which path?
CGGA —»| GGAG

(c) 4accggtt

For decisions about which paths etc, biology-based
heuristics come into play as well.



K-mer graph complexity - spur

(a) -(:_._.

(Short) dead-end in graph.

Can be caused by error at the end of some
overlapping reads, or low coverage

J.R. Miller et al./ Genomics (2010)



K-mer graph complexity - bubble

o T
Multiple parallel paths that diverge and join.

Caused by sequencing error and true
polymorphism / polyploidy in sample.

J.R. Miller et al./ Genomics (2010)



K-mer graph complexity —“frayed
rope”

9 e

Converging, then diverging paths.

Caused by repetitive sequences.

J.R. Miller et al./ Genomics (2010)



ACAGTAAAACAGAGG

Groxel view of repeat region / Arend Hintze



Resolving graph complexity

e Primarily heuristic (approximate)
approaches.

e Detecting complex graph structures can
generally not be done efficiently.

e Much of the divergence in functionality of
new assemblers comes from this.

* Three examples:



Read threading

(before) (after)
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Single read spans k-mer graph => extract
the single-read path.

J.R. Miller et al./ Genomics (2010)



Mate threading
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Resolve “frayed-rope” pattern caused by
repeats, by separating paths based on
mate-pair reads.

J.R. Miller et al./ Genomics (2010)



Path following
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Reject inconsistent paths based on mate-
pair reads and insert size.

J.R. Miller et al./ Genomics (2010)



More assembly issues

* Many parameters to optimize!

* RNAseq has variation in copy nhumber; naive
assemblers can treat this as repetitive and
eliminate it.

* Some assemblers require gobs of memory (4
lanes, 60m reads => ~ |50gb RAM)

e How do we evaluate assemblies?
> What'’s the best assembler?



K-mer based assemblers scale
poorly

Why do big data sets require big machines??

Memory usage ~ “real” variation + number of errors

Number of errors ~ size of data set

GCGTCAGGTAGCAGACCACCGCCATGGCGACGATG
GCGTCAGGTAGGAGACCACCGTCATGGCGACGATG
GCGTTAGGTAGGAGACCACCGCCATGGCGACGATG

GCGTCAGGTAGGAGACCGCCGCCATGGCGACGATG



De Bruijn graphs scale poorly with erroneous data

#Edges

N

Total edges

Error edges

True edges

#Réads

Conway T C , Bromage A J Bioinformatics 2011;27:479-486

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, B f m t
please email: journals.permissions@oup.com I O I n O r a I CS



Co-assembly is important for
sensitivity

4,004

Shared low-level Intestine

transcripts may not
reach the
threshold for
assembly.

Combined
+3,230



Is your assembly good!?

* For genomes, N50 is an OK measure:

> “50% or more of the genome is in contigs >
this number”

e That assumes your contigs are correct...!

* What about mMRNA and metagenomes??

* Truly reference-free assembly is
hard to evaluate.



How do you compare assemblies?

overlap



What'’s the best assembler?
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What'’s the best assembler?
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What'’s the best assembler?
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Snake assembly

Bradnam et al., Assemblathon 2:
http://arxiv.org/pdf/1301.5406v | .pdf



Note: the teams mostly used
multiple software packages

BCM-HGSC

BCM

4+1+P

Baylor College of Medicine Human
Genome Sequencing Center

SeqPrep, KmerFreq,
Quake, BWA,
Newbler, ALLPATHS-
LG, Atlas-Link, Atlas-
GapFill, Phrap,
CrossMatch, Velvet,
BLAST, and BLASR




Answer: it depends

» Different assemblers perform differently,
depending on
> Repeat content
> Heterozygosity

* Generally the results are very good (est
completeness, etc.) but different between
different assemblers (!)

e There Is No One Answer.



CEGMA

Each assembler lost different ~5% CEGs
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Tradeoffs in N 50 and % incl.

NG50 scaffold length (bp)
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Practical issues

e Do you have enough memory!?

e Trim vs use quality scores?

* When is your assembly as good as it gets?
* Paired-end vs longer reads?

» More data is not necessarily better, if it
introduces more errors.



Practical issues

* Many bacterial genomes can be
completely assembled with a combination
of PacBio and Illumina.

* As soon as repeats, heterozygosity, and
GC variation enter the picture, all bets
are off (eukaryotes are trouble!)



Mapping & assembly

e Assembly and mapping (and variations
thereof) are the two basic approaches
used to deal with next-gen sequencing
data.

e Go forth! Map! Assemble!



