
Advanced de novo assembly

Rayan Chikhi

Pennsylvania State University

MSU NGS Summer Course - June 2013

1/31

slightly more Advanced de novo assembly

Rayan Chikhi

Pennsylvania State University

MSU NGS Summer Course - June 2013

1/31

COURSE STRUCTURE

Q : How to create a draft genome on my own ?

Will talk mostly about tools before/after assembly, but not the biology that
follows.

- k parameter : how to choose the k -mer size (KmerGenie)

- low-memory assembly : running Minia

- Metrics : some recent pointers on assembly evaluation

- Pipelines : there is more than just running Velvet

2/31

THE k PARAMETER

Assembly is not robust with respect to the parameter k . Because the ideal
k -mer size depends on :

- sequencing coverage

- sequencing error rate

- genome complexity

k vs NG50 for 3 organisms : bacteria (S. aureus), human chr14, whole bumblebee genome (B.

impatiens)

3/31

POSSIBLES APPROACHES

There exists two tools to estimate the best k , both are designed for Velvet :

- Velvetk : formula based on number of reads, estimated genome size

- VelvetOptimizer : just run Velvet for all values of k .

Velvetk does not know about genome complexity and error rate.
VelvetOptimizer takes in the order of CPU-years on > 100 Mbp genomes.

4/31

KMERGENIE

Two basic assumptions in DNA/RNA/metaDNA/metaRNA assembly :

- A larger k value allows to resolve more repetitions.

- A smaller k increases the chances of seeing a given k -mer.

Thus, one should assemble using the largest k -mer size possible, such that
the k -mer coverage is sufficient.

Apparté : in RNAseq, this partly explains why a single k value is not ideal. Low-abundance

transcripts require a small k -mer size.

Facts :

- Resolving repetitions means obtaining more k -mers that are present in
the genome (correct k-mers).

- Increasing the k -mer size also means obtaining more erroneous k -mers
(= k -mers containing at least an error).

In conclusion, we want to estimate and maximize the number of correct
k -mers.

5/31

KMERGENIE

How to estimate the number of correct k -mers :

1. Compute k -mer histograms for all k

2. Correct k -mers should be distributed as a Gaussian

3. Fit a model to the histograms

Chr 14 (≈ 88 Mbp ; histograms and fit)

6/31

KMERGENIE
How to estimate the number of correct k -mers :

1. Compute k -mer histograms for all k
2. Correct k -mers should be distributed as a Gaussian
3. Fit a model to the histograms

Abundance

N
um

be
r

of
 k

m
er

s

0 50 100 150

1e
+

05
1e

+
07

1e
+

09

k = 21

M. persicae (≈ 300 Mbp), k=21 ; green curve is fitted to the putative correct (genomic) k -mers

component 6/31

KMERGENIE

Summary :

- KmerGenie predicts the k value which maximizes the assembly size.

- It quickly estimates the histograms using sampling.

●

●

●

●

●
●●●

●●●●
●●

●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●●●●

●●
●

●
●
●●●●

●●●

●

●
●

●
●

●

●

●

●
●●●●●

●●
●
●
●

●

●●

●

●●

●

●●●

●
●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

0 20 40 60 80 1001e
+

04
1e

+
06

1e
+

08

Abundance

N
um

be
r

of
 k

−
m

er
s

Chr 14 (≈ 88 Mbp) ; small dots are the sampled histogram

7/31

KMERGENIE RESULS

Results on the GAGE benchmark :

8/31

USING KMERGENIE

curl http://kmergenie.bx.psu.edu/kmergenie-1.5356.tar.gz | tar xz

cd kmergenie-1.5356

make

Usage for a single file :

./kmergenie reads.fastq

Usage for a list of files :

ls -1 *.fastq > list_reads

./kmergenie list_reads

What is returned :

[..]

best k: 47

As well as a set of kmer histograms to visualize.

9/31

MINIA

Minia is the lowest-memory de novo genome assembler to date.

History :

1. Titus’ group published a technical khmer paper on arXiv, they obtained
inexact de Bruijn graphs extremely efficiently

2. We extended the idea to make the graphs exact and cited their arXiv
paper

3. This was applied to genome assembly (Minia), local RNA-seq assembly
(KisSplice), and other software in preparation

10/31

MINIA

Minia is the lowest-memory de novo genome assembler to date.

History :

1. Titus’ group published a technical khmer paper on arXiv, they obtained
inexact de Bruijn graphs extremely efficiently

2. We extended the idea to make the graphs exact and cited their arXiv
paper

3. This was applied to genome assembly (Minia), local RNA-seq assembly
(KisSplice), and other software in preparation

10/31

MINIA
Minia assembles a human genome in ≈ a day on a desktop computer,

and recently C. elegans on a Raspberry PI.

11/31

ASSEMBLY QUALITY OF MINIA

- Minia only creates contigs

- Thus, Minia is not a complete assembly pipeline like SOAPdenovo2 or
Allpaths-LG

- Assembly contiguity and quality is ≈ Velvet

- No claim to perform better than SOAPdenovo2 or Allpaths-LG

12/31

USING MINIA

Installation :

curl http://minia.genouest.org/files/minia-1.5316.tar.gz | tar xz

cd minia-1.5316

make

Then launch :

./minia reads.fq kmer_size cov_cutoff estimated_genome_size output

Setting cov_cutoff to 3 for usual sequencing coverages (30x-100x) is
reasonable, but it is good practice to inspect KmerGenie plots.

Result :

output.contigs.fa

13/31

head histograms-k21.histo

1 1950283000

2 103024000

3 21882000

4 7967000

5 3912000

Abundance

N
um

be
r

of
 k

m
er

s

0 50 100 150

1e
+

05
1e

+
07

1e
+

09

k = 21

A possible cov_cutoff value (5, shown as a red line), realizing a compromise between retaining

most correct k -mers and discarding many erroneous ones.

14/31

METRICS

Preamble : There is no trivial total order (i.e. ranking) between
assemblies. A compromise is generally made.

Why ? > 2 independent criteria to optimize (e.g., total length, and
average size of assembled sequences)

Example Would you rather have an assembly with good coverage and
short contigs, or an assembly with mediocre coverage and
long contigs ?

15/31

METRICS

Preamble : There is no trivial total order (i.e. ranking) between
assemblies. A compromise is generally made.

Why ? > 2 independent criteria to optimize (e.g., total length, and
average size of assembled sequences)

Example Would you rather have an assembly with good coverage and
short contigs, or an assembly with mediocre coverage and
long contigs ?

15/31

OVERVIEW OF REFERENCE-FREE METRICS

Assume you have no close reference genome available.
Metrics serve two purposes :

1. Individually evaluate a single assembly

2. Compare several assemblies made from different parameters or
assemblers

Classical metrics :
- Number of contigs/scaffolds

- Total length of the assembly

- Length of the largest contig/scaffold

- Percentage of gaps in scaffolds (’N’)

- N50/NG50 of contigs/scaffolds

- Number of predicted genes

- Number of core genes [CEGMA]

An easy tool to compute most of these is QUAST :

./quast.py assembly.fa

Recent assembly metrics are mostly based on :

- internal consistency

- likelihood of then assembly given the reads

16/31

REFERENCE-FREE METRICS : N50
Let’s do this slide only if a majority wants.

N50 = Largest contig length
at which longer contigs co-
ver 50% of the total assem-
bly length

NG50 = Largest contig
length at which longer
contigs cover 50% of the
total genome length

A practical way to compute N50 :

- Sort contigs by decreasing lengths

- Take the first contig (the largest) : does it cover 50% of the assembly ?

- If yes, this is the N50 value. Else, try the next one (the second largest),
and so on..

17/31

REFERENCE-FREE METRICS : N50
Let’s do this slide only if a majority wants.

N50 = Largest contig length
at which longer contigs co-
ver 50% of the total assem-
bly length

NG50 = Largest contig
length at which longer
contigs cover 50% of the
total genome length

A practical way to compute N50 :

- Sort contigs by decreasing lengths

- Take the first contig (the largest) : does it cover 50% of the assembly ?

- If yes, this is the N50 value. Else, try the next one (the second largest),
and so on..

17/31

INTERNAL CONSISTENCY

Rarely appears in assembly articles but almost the only way to detect errors
in de novo assemblies.

Internal consistency : Percentage of paired reads correctly aligned back to
the assembly (happy pairs).

Can also pinpoint certain misassemblies (mis-joins).
Recent tools :

- REAPR1 [M Hunt, .. (Gen. Biol.) 2013]

- FRCurve2 [F. Vezzi, .. (Plos One) 2013]

1Google : REAPR assembly
2Google : FRCurve

18/31

INTERNAL CONSISTENCY : EXAMPLE

Hawkeye software

19/31

ASSEMBLY LIKELIHOOD (1)

Principle : for an assembly A and a set of reads R,

P(R|A) =
Y

i

P(ri |A)

Where each p(ri |A),

- is the probability that the read ri is sequenced if the genome was A.

- In practice, p(ri |A) can be estimated by aligning ri to the assembly.

Recent software :

- ALE [S. Clark, .. (Bioinf.) 2013]

- CGAL [A. Rahman, .. (Gen. Biol.) 2013]

- a third one from M. Pop’s group

20/31

ASSEMBLY LIKELIHOOD (2)

From my exp., ALE is easier to use/faster, but still not fully automated (needs
you to pre-align the reads).

./ALE reads_aligned_to_assembly.sam assembly.fa

Returns :

ALE_score: -194582491.814571

21/31

ASSEMBLY LIKELIHOOD (3)

(higher likelihood is better)

Likelihood-based metrics are comparative ; i.e. computing them for a single
assembly would be meaningless.

22/31

ASSEMBLY LIKELIHOOD (4)

ALE can also plot the average likelihood over the genome.

23/31

SUMMARY

Google ’assembly uncertainty’ for a nice summary, blog post by Lex
Nederbragt.
In summary :

- No total order for metrics

- Use QUAST

- Use CEGMA

- Try ALE

I am unsure if likelihood-based metrics are very robust indicators, might favor
high-coverage assemblies..

24/31

EXERCICE

Here are two assemblies, aligned to the same reference :

- For each, compute the following metrics :
I Total size of the assembly, N50, NG50 (bp)
I Coverage (%)

- Which one is better than the other ?

25/31

EXERCICE (SOLUTION)

Here are two assemblies, aligned to the same reference :

- For each, compute the following metrics :
I Total size of the assembly (19 bp, 18 bp), N50 (6 bp, 9 bp), NG50 (6 bp, 5 bp)
I Coverage (%) (90, 90)

- Which one is better than the other ? (I would say first one)

26/31

ASSEMBLY PIPELINES

27/31

SCAFFOLDERS

Scaffolding is the step that maps paired reads to
contigs to order them.

Most assemblers include a scaffolder
(SOAPdenovo, SGA, ABySS, Velvet, Newbler..).

Scaffolding is where most assembly errors are
likely to be made.

If [your assembler]’s scaffolder did not work for
you :

- Use another assembler’s scaffolder (e.g.
SOAPdenovo2)

- Use a stand-alone scaffolders (e.g. SSPACE,
Bambus 2, Opera, etc..)

- Avoid performing scaffolding, for some
applications contigs are good enough.

SSPACE is easy to use :

perl SSPACE_Basic_v2.0.pl \

-l small_config_file.txt -s assembly.fa

28/31

GAPFILLERS

Gap-filling is the step that fills the gaps inside
scaffolds.

Gap-filling can increase contigs length by an order
of magnitude. But mistakes may happen at short
tandem repeats.

Few assemblers include a gap-filler
(SOAPdenovo, Allpaths-LG) :

- SOAPdenovo2 GapCloser can be used
standalone, Allpaths not.

- There exists stand-alone gap-fillers
(GapFiller, FinIS), but they have limitations.

GapCloser is quite easy to use :

./GapCloser -b soap_config_file \

-a contigs.fa -o scaffolds

29/31

PERSONAL EXPERIENCE

If I was in a hurry, and had to choose a single assembler

Your data follows the Broad recipe Allpaths-LG

General purpose SOAPdenovo2

If not enough memory Minia

454 Newbler

RNA-Seq Trinity

Metagenome RayMéta (?)

30/31

SUMMARY : TO CREATE A DRAFT GENOME FROM SHORT READS

Step by step :

1. Prior to sequencing : ask for the Broad recipe, if possible

2. Read the GAGE and/or Assemblathon 2 paper

3. Pick one (two is better) assemblers from the papers above

4. Run each assembler with several sets of parameters

5. Run a program to compare these assemblies

For bacterial genomes, another option is PacBio, it looks increasingly
interesting.

31/31

