RNA-seq part II:
guantification and models for
assessing differential expression



Counting

e One of the most difficult issues has been how
to count reads.

e What are some of the issues that we need to
account for during counting of reads?



Counting

We are interested in transcript abundance.

But we need to take into account a number of
things.

How many reads in the sample.
Length of transcripts

GC content and sequencing bias (influencing
counts of transcripts within a sample).



Counting

« RPKM (reads aligned per kilobase of exon per
million reads mapped) — Mortazavi et al 2008

 FPKM (fragments per kilobase of exon per
million fragments mapped). Same idea for
paired end sequencing.



RPKM

r x10°
RPKM,, = §
ﬂg X R

R = total # mapped reads from that sample
R=)r,
geG

fl, = feature length (i.e. transcript length)



Problems with RPKM

* As Istvan pointed out yesterday RPKM is not
necessarily a consistent measure of
expression abundance (or relative molar
concentration).

e See
— http://blog.nextgenetics.net/?e=51

— Wagner et al 2012 Measurement of mRNA abundance using RNA-seq data: RPKM measure is
inconsistent among samples. Theory Biosci




Transcripts per million (TPM)

r, X 1l x 10°
fl, x T
R = total # mapped reads from that sample
r, x 1l
T — 8
270

geqG

TMP, =

rl = read length



Normalization (for DE) can be much
more complicated in practice
* Why might scaling by total number of reads

(sequencing depth) be a misleading quantity
to scale by?



Normalization (for DE) can be much

more complicated in practice
e Scaling by total mapped reads (sequencing

depth) can be substantially influenced by the
small proportion of highly expressed genes.

* A number of alternatives have been proposed
and used (i.e. using quantile normalization)

Bullard, J. H., Purdom, E., Hansen, K. D., & Dudoit, S. (2010). Evaluation of statistical methods for normalization and
differential expression in mMRNA-Seq experiments. BMC Bioinformatics, 11, 94. doi:10.1186/1471-2105-11-94



A bit of background on probability.

 Fundamentally our observed measure of expression
are the counts of reads.

* Depending upon the data modeling framework we
wish to use, we need to account for this, as these are
not necessarily approximated well by normal
(Gaussian) distributions that are used for “standard”
linear models like t-tests, ANOVA, regression.

* This is not really a big problem, as it is easy to model
data coming from other distributions.



Probability

Probability Density vs. Mass function
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Probability Mass function (For
discrete distributions, like read
counts)

Poisson distribution , lambda=10
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Normal density function
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Probability Density function

~N(10,3.3) DENSITY

15

20

Height at x=13 is 0.0799

This is not the probability at x=13, but the
density.

i.e. f(13) =0.0799, where f(x) is the normal
distribution.

P(x=13| N(mean=10,sd=3.3)) =0

WHY?



Normal density function
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Probability Density function

~N(10,3.3) DENSITY

We can define the probability in the
interval
10<x<15

P(10 £x<15| N(10,3.3)) =0.435




Clarifications on continuous distributions.
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The multitude of probability
distributions allow us to to choose
those that match our data or
theoretical expectations in terms of
shape location, scale.



Fitting a distribution is an art and science of
utmost importance in probability modeling.
The idea is you want a distribution to fit
your data model “just right” without a fit
that is “overfit” (or underfit). Over fitting
models is sometimes a problem in modern
data mining methods because the models
fit can be too specific to a particular data
set to be of broader use.

Seefeld 2007



So why do we use them? It’s all about
shape and scale!

* Because they provide a usable framework for
framing our questions, and allowing for
parametric methods; i.e likelihood and
Bayesian.

 Even if we do not know its actual distribution,
it is clear frequency data is generally going to
be better fit by a binomial than a normal
distribution. Why?



Why will it be a better fit?

* The binomial is bounded by zero and 1

e Other distributions (gamma, poisson, etc)
have a lower boundary at zero.

* This provides a convenient framework for the
relationship between means and variance as
one approaches the boundary condition.



Some discrete distributions

Binomial
Poisson
Negative-binomial



Random variables

* This is what we want to know the probability
distribution of.

* |.e. P(x|some distribution)

| will use “x” to be the random variable in each
case.



Binomial

Let’s say you set up a series of enclosures. Within each enclosure you place 25
flies, and a pre-determined set of predators.

You want to know what the distribution (across enclosures) of flies getting
eaten is, based on a pre-determined probability of success for a given

predator species.

You can set this up as a binomial problem.

N ( R calls this size) = 25 (the total # of individuals or “trials” for predation) in the

enclosure
p = probability of a successful predation “trial” (the coin toss)
x = # trials of successful predation. This is what we usually want for the probability

distribution.



Binomial

(N
\ A/

p (-p)*

(N N

\ X B )C!(N—)c)!<

You will often see x=k and hear “ N choose k”

You can think of this in two
ways.

A) A normalizing constant so
that probabilities sum to 1.

B) # of different combinations to
allow for x “successful”
predation events out of N total.



Example

 |f predator species 1 had a per “trial”
probability of successfully eating a prey
item of 0.2, what would be the probability
of exactly 10 flies (out of the 25) being
eaten in a single enclosure.

P(x=10| bi(N=25,p=0.2)) = 0.0118

Not so high. We can look at the expected probability distribution for different values of
X.



bi(N=25,p=0.2)

This would be the expected distribution if
we set up many replicate enclosures with
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The rub...

e Usually we are not interested in the
probability of a given number of “successfu
trials, but in estimating the parameter, p itself.

|II

* P(D|H)
* P(x|bi(N=25,p=?)



binomial

* 0<x<N
* Mean = Np (how do you estimate p)
e Var = Np(1-p)



Let’s say we had 100 flies per

enclosure, and predator species 3 was

probability of X
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0.00

really ineffective, p=0.01

predator species 3, bi(N=100,p=0.01)

While there may be a theoretical limit to the number of
flies that can be eaten, practically speaking it is unlimited
since the predation probability is so low.

- This is a lot like the situation we have with RNA-seq data.
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x = number of flies eaten out of 100



Poisson

* When you have a discrete random variable
where the probability of a “successful” trial
is very small, but the theoretical (or
practical) range is effectively infinite, you
can use a poisson distribution.

e Useful for counting # of “rare” events, like
new migrants to a population/year.

* # of new mutations/offspring..



Poisson

* |tis also (potentially) useful for RNA-seq
data! (although we will see not very useful).



Poisson

e\

x!

X is our random variable (# events/unit sampling effort)
A Is the “rate” parameter. i.e. Expected number of reads (for a transcript) per sample
A is the mean and the variance!!!!

For its relation to a binomial when N is large and p is small
A= N*p



Poisson

* Let’s say flies disperse to colonize a new patch
at a very low rate ( previous estimates suggest
we will observe one fly for every two new

patches we examine, 1=0.5).

 What is the probability of observing 2 flies on
a new patch of land?

P(x=2| poisson(A=0.5)) = 0.076



Probability of observing x number of
flies on a patch given lambda=0.5

Poisson(lambda=0.5)
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What happens as

proportion of samples for transcript x

A = 4 (expected # of reads for transcript x across samples
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Poisson mean and variance

* When lambda is small for your random
variable, you will often find that your data is
“over-dispersed”.

* Thatis there is more variation that expected
under Poisson (lambda).

* Similarly when lambda gets large, you will
often find that there is less variation than
expected under Poisson(lambda).



Why poisson might not model
sequence reads well

 Most RNA-seq data (and most count data in
biology) is not modeled well by poisson
because the relationships between means and

variances tend to be far more complicated
among biological replicates.

* |t has been argued (Mortzavi et al 2008) that
technical variation in RNA-seq is captured by
Poisson. | have my doubts.



Quasi-poisson

Since over-dispersion is such a common issue, a
number of approaches have been developed to
account for it with count data.

One is to use a quasi-poisson.
Instead of variance(x) = A, it is

Variance (x) =A6

Where 6 is the (multiplicative) over-dispersion
parameter.



Negative binomial

* |n biology the Neg. Binomial is mostly used
like a poisson, but when you need more
dispersion of x (it needs to be spread out

more).

* You Can think of the negative binomial as a
Poisson distribution where lambda itself varies
according to a Gamma distribution.



Negative binomial

k o\ x
Negative Binomial Distribution = F( X )( ) ( U )
D(k)x! \k+u) \k+u

Expected number of counts =p
Over-dispersion parameter = k

For our purposes all we care about is that

var(x) = u+ ku’



General linear models

* For response variables that are continuous,
you are likely familiar with approaches that
come from the general linear model.

y ~ N(ﬁo T /31)5,()-2)

A standard linear regression (if x is continuous).
If x is discrete this would be a t-test/Anova.



Continuity of Statistical Approaches

Process Models

Mixed Effects Model

Predictors: Fixed (random or both)
General Linear — Generalized Linear
Response: Model (normal) Model (non-normal)
predictors: ANOVA Regression ANCOVA
' (discrete) (continuous) (both)

Number of T

Levels: t-test



Generalized linear models

But what do you do when your response variable is not normally distributed?

The framework of the linear model can be extended to account for different
distributions fairly easily (one major class of these is the generalized linear
models).



Continuity of Statistical Approaches

Process Models

Mixed Effects Model

Predictors: Fixed (random or both)
General Linear — Generalized Linear
Response: Model (normal) Model (non-normal)
predictors: ANOVA Regression ANCOVA
' (discrete) (continuous) (both)

Number of T

Levels: t-test



Generalized Linear Models
(GLiM)

In many cases a general linear model is not appropriate because
values are bounded

— e.g.counts >0, proportions between O and 1

A generalization of linear models to include any distribution of errors
from the exponential family of distributions

* Normal, Poisson, binomial, multinomial, exponential, gamma, NOT negative
binomial

General Linear Model is just a special case of GLiM in which the errors
are normally distributed

Example, logistic regression
We will use likelihood for parameter estimation and inference



Generalizations of GLM

* Instead of a simple linear model:
Y=Db,+bx;+byx,+e

— Assume that e’s are independent, normally distributed with mean
0 and constant variance s?

— Can solve for b’s by minimizing squared e’s

* GLiM considers some adjustment to the data to linearize Y
- a link function

Y =g(by+byx+byx, +e)
or f(Y)=b,+bx+byx,+e
— For example for count data which are always positive

f(Y) = log(Y) log link



What is a link function?

The link function is a way of transforming the
observed response variable (LHS).

Goals
1) linearize observed response
2) Alter the boundary conditions of the data.

3) To allow for an additive model in the
covariates (RHS)



Poisson Family

Data are counts of something (i.e. 0, 1, 2, 3, 4...)
Number of occurrences of an event over a fixed period of time or space
Examples...

If the mean value is high then counts can be log-normal or normally distributed

When mean value is low then there starts to be lots of zeros and variance depends on
the mean

If upper end is also bounded then binomial would be better

Default link is the log link, variance function = u
— i.e., family = poisson (link = “log”, variance = “mu”)
— Other option might be the sgrt link



Poisson Family

* Frequency Tables (log-linear or multinomial models)

— Comparison of counts among categories or cells
— Like a G-test (or x? test)



Poisson and nb Family

lOg(fi) = /J)() + /31)6
or

U = eﬁo +h1x

Essentially it means you can log transform the sequence counts and use a
poisson, quasi-poisson or negative binomial to fit it
(most links are more complicated, this is nice and simple).

i.e. counts are modeled as . ,
counts; ~ pois(A=u, 0" = A)
- 2
counts; ~ gpois(A = u, 0° = AB)
counts; ~ nb(A = u, o’ = u+ uk)



Methods using nb glm

edgeR
DESeqg (maybe DEXseq as well?)
BaySeq

However these all model the variance quite
differently (how they borrow information
across genes to estimate mean-variance
relationships).



Methods using poisson and quasi-
pOoISson

e tspm (two stage poisson model)

— Fits models with poisson first. If over-dispersed
then uses a quasi-poisson.

— Thus there are essentially two groups of genes.



Variances require lots of data to
estimate well (not just for count data)

* [t turns out that to estimate variances, you
need a lot more replication than you do for

means.

* However most RNA-seq experiments still have
small numbers of biological replicates.

* So how to go about estimating variances?



IF sample sizes are large

 Most methods do well (based on NB, quasi-P
or non-parametric approaches).

 They can model individual level variances (and
potentially can use resampling approaches to
avoid having to make parametric
assumptions).



But if sample sizes (in terms of
biological replication) is small.

Then we have a problem.

This is where the software really tends to
differ, as they all make different assumptions
about the variance, and how best to model it.

In particular edgeR and DEseq use some
methods to borrow information across genes
(and have options to change this process).

This can dramatically change the results.

Anders, S., & Huber, W. (2010). Differential expression analysis for

sequence co

unt data. Genome Biology, 11(10), R106. doi:10.1186/

gb-2010-11-10-r106



Biological replication gives far more statistical
power than increased sequencing depth within a
biological sample!!!l

e Sequencing (and library prep) costs are still sufficiently
expensive that most experiments use small numbers of
biological replicates.

* Given the additional costs of library costs (~¥225S/
sample at our facility), many folks go for increased
depth instead of more samples.

* For a given level of sequencing depth (total) for a
treatment, it is far better to go for more biological
replicates, each at lower sequencing depth (rather
than fewer replicated at higher sequencing depth).
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Accounting for multiple isoforms.

* - Only count reads that map uniquely to an
isoform (Alexa-Seq). Can be very problematic,
when isoforms do not have unique exons.

e -5so called "isoform-expression” methods
(cufflinks, MISO) model the uncertainty
parametrically (often using MLE). The model with

the best mix of isoforms that models the data

(highest joint probability) is the best estimate.

How this is handled differs a great deal by the

different
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How do the methods compare for real
data?

A edgeR DESeq

Kvam et al. 2012



AUC

How do the methods compare in a different set
of simulations?
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But how about isoforms and DE?
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Isoforms can really mess things up.
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Problems with cufflink and cuffdiff?
Reproducibility...

http://seganswers.com/forums/showthread.php?t=20702

http://seganswers.com/forums/showthread.php?t=17662
http://seqanswers.com/forums/showthread.php?t=23962
http://seqanswers.com/forums/showthread.php?t=21020

http://seqanswers.com/forums/showthread.php?t=21708
http://www.biostars.org/p/6317/
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Differentially expressed genes based on software for quantification
Differentially
expressed

/ genes based

Stamp TopHat on software

for mapping

u Conflict from probe design - Low expression signal Qualue <0.05|
 Not in array 4 SNV & INDEL in ORF I
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Seqganswer or blog postings of use

http://seqanswers.com/forums/showpost.php?p=102911&postcount=60

http://gettinggeneticsdone.blogspot.com/2012/11/star-ultrafast-universal-rna-seqg-aligner.html
http://gettinggeneticsdone.blogspot.com/2012/12/differential-isoform-expression-cuffdiff2.html
http://gettinggeneticsdone.blogspot.com/2012/09/deseq-vs-edger-comparison.html




Differential expression

D E S e q (http://www.ncbi.nlm.nih.gov/pubmed/20979621)

EDGE-R

EBseq (RSEM/EBseq)

Y, ——

EXPress (hipssiomsthberieley.cdu/express/overview.htm

Bee rS Si m U Iati 0 n pi pe I i n e (http://www.cbil.upenn.edu/BEERS/)

D E XS e q ( http://bioconductor.org/packages/release/bioc/html/DEXSeq.html )



Example workflows

 Trapnell eta | “Tuxedo” protocol | sent out.

e http://jura.wi.mit.edu/bio/education/
hot topics/QC HTP/QC HTP.pdf

e http://jura.wi.mit.edu/bio/education/
hot topics/RNAseqg/RNAsegDE Dec2011.pdf




BWA
Bowtie
Bowtie2

QC & read
cleanup

Unspliced

alignment to

transcriptome

to
txptome

RSEM,
eXpress

RSEM,
eXpress

RNA-seq Workflows and Tools. Stephen Turner. Figshare. http://dx.doi.org/10.6084/m9.figshare.662782

Ungapped
alignment

Transcriptome
Reconstruction

I

Transcript
quantification

FASTQC, RNASeQC, fastx, RSeQC, ...

TopHat, STAR, MapSplice, SpliceMap,

HMMSplicer, TrueSight, SOAPsplice, PASSion,

PALMapper, SplitSeek, Supersplat, SeqSaw,
MapNext, GSNAP, QPALMA, OSA

Spliced

alignment to

genome

Gapped Count reads

alignment .
N mapping to
genome Gene

DESeq
EdgeR
voom/limma

Cufflinks,
Cufflinks RABT,
MISO, iReckon,
Scripture,
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Pipelines for RNA-seq (geared towards splicing
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Experimental setup
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