A table side chat on thinking
about your NGS data statistically
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Goals

| am not planning on trying to provide any sort of overview of
statistical methods for genomic data. Instead | am going to
provide a few short ideas to think about.

Statistics (like bioinformatics) is a rapidly developing area, in
particular with respect to genomics. Rarely is it clear what the
“right way” to analyze your data is.

Instead | hope to aid you in using some common sense when
thinking about your experiments for using high throughput
seguencing.



Useful references

Paul L. Auer and R.W. Doerge 2010. Statistical Design and Analysis of RNA-Seq
Data. Genetics. 10.1534/genetics.110.114983
PMID: 20439781

Bullard, J. H., Purdom, E., Hansen, K. D., & Dudoit, S. (2010). Evaluation of
statistical methods for normalization and differential expression in mRNA-Seq
experiments BMC Bioinformatics, 11, 94. doi:10.1186/1471-2105-11-94



Designing your experiment before you

start.
Sampling
o Over all we are going to be thinking
Replication . .
about how to avoid Confounding
Blocking sources of variation in the data.

Randomization

All of these are larger topics that are
part of Experimental Design.
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Sampling

Sampling design is all about making sure that
when you “pick” (sample) observations, you
do so in a random and unbiased manner.

Proper sampling aims to control for
unknown sources of variation that influence
the outcome of your experiments.

This seems reasonable, and often intuitive to
most experimental biologists, but it can be

very insidious.
Whiteboard...
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Replication
Blocking
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Imagine you have an experiment with one factor (sex), with two
treatment levels ( males and females).

You want to look for sex specific differences in the brains of your
critters based on transcriptional profiling, so you decide to use
RNA-seq.

Perhaps you have a limited budget so you decide to run one
sample of male brains, and one sample of female brains, each in
one lane of a flow cell.

What (useful) information can you get out of this?

Not much (but there may be some). Why?
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Replication

Why?

No replication. How will you know if the differences you observe
are due to differences in males and females, random (biological)
differences between individuals, or technical variation due to
RNA extraction, processing or running the samples on different
lanes.

All of these sources of variation are confounded, and there are
no particularly good ways of separating them out.

But there are lots of sources of variation, so how do we account
for these?



Replication

To date, several studies have suggested that “technical”
replicates for RNA-seq show very little variation/ high
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How might such a statement be misleading about variation?



Replication

This study looked at a single source of technical variation.

Sampling
Running exactly the same sample on two different lanes on a
Replication flow cell.
Blocking This completely ignores other sources of “technical variation”
variation due to RNA purification
Randomization variation due to fragmentation, labeling, etc..

lane to lane variation
flow cell to flow cell variation

All of these may be important (although unlikely interesting)
sources of variation...

However.....
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Replication

Many studies have ignored the BIOLOGICAL SOURCES of
VARIATION between replicates. In most cases biological

variation between samples (from the same treatment) are
generally far more variable than technical sources of variation.

While it would be nice to be able to partition various sources of
technical variation (such as labeling, RNA extraction), it often
too expensive to perform such a design (see white board).

IF you have limited resources, it is generally far better to have
biological replication (independent biological samples for a

given treatment) than technical replication.

Does these lead to confounded sources of variation?
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Blocking

Blocks in experimental design represent some factor
(usually something not of major interest) that can strongly
influence your outcomes. More importantly it is a factor
which you can use to group other factors that you are
interested in.

For instance in agriculture there is often plot to plot
variation. You may not be interested in the plot themselves
but in the variety of crops you are growing.

But what would happen if you grew all of strain 1 on plot 1
and all of strain 2 on plot 2?

Whiteboard.

These plots would represent blocking levels
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Blocking

In genomic studies the major blocking levels are often the
slide/chip for microarrays (i.e. two samples /slide for 2
color arrays, 16 arrays/slide for lllumina arrays).

For GAIll/HiSeq RNA-seq data the major blocking effect is
the flow cell itself, or lanes within the flow cell.
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Blocking

Incorporating lanes as a blocking effect

Balanced Blocked Design

..

* Sequence technical replicates

* Treatment A

« Biological replicate

* RNA extraction

+ Bar-code and pool

* Preparation for sequencing

Lane 1 Lane2 Lane3 Lane 4 Lane5 Laneb

* Treatment

Confounded Design

« Biological replicate

* RNA extraction and

preparation for
sequencing

» Sequence each
sample in alane

Lane1 Lane2 Lane3 Laned Lane5 Laneb

Auer and Doerge 2010




Blocking designs

Balanced Incomplete Blocking

Sampling Design (BIBD)
Replication

Let’s dissect these subscripts.
slocking Tl

Randomization

Balanced for treatments across flow cells.. Randomized for location Auer and Doerge 2010



You have designhed and run the
experiment... now what?

First a couple of quotes from a great statistician:

An approximate answer to the right problem is worth a good deal more than an exact
answer to an approximate problem.
John Tukey

Numerical quantities focus on expected values, graphical summaries on unexpected values.
John Tukey



BWA
Bowtie
Bowtie2

QC & read
cleanup

Unspliced

alignment to

transcriptome

to
txptome

RSEM,
eXpress

RSEM,
eXpress

RNA-seq Workflows and Tools. Stephen Turner. Figshare. http://dx.doi.org/10.6084/m9.figshare.662782

Ungapped
alignment

Transcriptome
Reconstruction

I

Transcript
quantification

FASTQC, RNASeQC, fastx, RSeQC, ...

TopHat, STAR, MapSplice, SpliceMap,

HMMSplicer, TrueSight, SOAPsplice, PASSion,

PALMapper, SplitSeek, Supersplat, SeqSaw,
MapNext, GSNAP, QPALMA, OSA

Spliced

alignment to

genome

Gapped Count reads

alignment .
N mapping to
genome Gene

DESeq
EdgeR
voom/limma

Cufflinks,
Cufflinks RABT,
MISO, iReckon,
Scripture,
IsoLasso,
rQuant,
FluxCapacitor, ...

DEXSeq

Cuffdiff2




Visually examine your data at every
step of the analysis!!!!!

By far the single most important thing you should be thinking about with your data,
at every stage of the analysis (raw, filtered, alighed, normalized, modeled) is how

to present the data graphically.

Plots are a very good way to pick out if something wacky is going on with your
data.

Even if your data is of the highest quality, different software can produce very
different results (in unattended ways). Plenty of Bugs and features.






Exploratory Data Analysis

e What is EDA?

* An approach to data analysis, largely using
graphical techniques to help refine
hypotheses and aid in the model building
process.

 Some advocates suggest it can be used for
hypothesis generation (we will discuss when
and where this might be sensible).



Objectives of EDA

Propose/refine models to explain the
observed patterns of the data.

Assess assumptions on which statistical
modeling is based

Provide a context for further data collection.

Help in determining the appropriate form of
statistical modeling (LS, MLE< Bayesian,
resampling...).



Useful online tutorial on EDA

http://www.itl.nist.gov/div898/handbook/eda/eda.htm




EDA

 EDA emphasizes “robust” and non-parametric
approaches to examining the data.



Critiques of EDA

e “Data-Dredging”. Using it as “free lunch” with
respect to a posteriori hypothesis testing.

* Observing patterns that are not real.

“Under torture, the data readily yields false
confessions”

(MainDonald & Braun 2003)



suggestions

Bolker (2007) suggests an honest approach: prior to
examining your data you write down a list of the
patterns you are looking for so that you can
distinguish between:

1) Patterns you were initially looking for

2) Unanticipated patterns that answer the same
guestion in different ways.

3) Novel (but likely spurious) patterns.



Cross-validation

Subset your data (cross-validation):

The other useful approach is to use a random subset of
all of your data (No more than 40% of it) for data
exploration, and then you can perform the model

fitting based on the entire data set (or better yet the
remaining 60%).

Of course, this only works if you have enough data to do
so!



Bi-variate scatterplot with loess. Is
this data dredging?

scatterplot of Sex comb teeth and basi tarsus length
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This would not be considered EDA..
Why not?

Scaling relationships between SCT and tarsus lengths across Drosophila genotypes

16
|

Distal-less/+
e wild-type

14
|

# of Sex Comb Teeth

. . . e 0. ®
o . . o .‘3..;: g'. .: 0".2 .....O .' .
© — ° o o
.
I I I I I I I
0.14 0.16 0.18 0.20 0.22 0.24 0.26

Tarsus Length



Some examples: Digital Gene

Expression (Sequence tags) for RNA

What’s the
difference
between these
plots?
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Some examples: Digital Gene
Expression (Sequence tags) for RNA
quantification

A comparison of two lanes of DGE sequence tags.
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freq.diff

Whole genome analysis can be
messy, how do we deal with this.
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Genome level Correlations are not a
good measure of repeatability

* One BIG mistake people make with BIG
genomics data sets is treat each gene (or
genomic interval) as an independent data
point. In particular for correlation analysis.

e This is almost never the case...
chalkboard.



Experimental setup
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One right way?

At this point it is safest to assume that there is no

one single “right way” to analyze your NGS data
(for RNAseq or anything else).

While a number of studies have demonstrated
that several pipelines give similar results, it is
best to try several approaches.

Even fitting what seems like the “same” model
can give different results from different software.

Let’s discuss why.



Is performing your analysis multiple
ways enough?

e Just because you create multiple forks in your
analysis (different read mappers, different
tools for quantification), does not mean you
are out of the woods.

* Always generate lots of plots to help you
visualize your data in as many ways as
possible.



Simulating your analysis

* One other important tool (that is very
straightforward) is to use simple simulation or
resampling approaches to “rig” the analysis.

 White board.



Readings for Monday and Tuesday

Vijay, N., Poelstra, J. W., Klinstner, A., & Wolf, J. B. W. (2012). Challenges and strategies in
transcriptome assembly and differential gene expression quantification. A comprehensive in
silico assessment of RNA-seq experiments. Molecular Ecology. doi:10.1111/mec.12014

Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for
transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469-477.
doi:10.1038/nmeth.1613

Nookaew, I., Papini, M., Pornputtapong, N., Scalcinati, G., Fagerberg, L., Uhlén, M., & Nielsen, J.
(2012). A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to
differential gene expression and cross-comparison with microarrays: a case study in
Saccharomyces cerevisiae. Nucleic Acids Research, 40(20), 10084—-10097. doi:10.1093/nar/
gks804



