

 Navigation

 	
 index

 	
 next |

 	angus 5.0 documentation

Next-Gen Sequence Analysis Workshop (2015)

This is the schedule for the 2015 MSU NGS course [http://bioinformatics.msu.edu/ngs-summer-course-2015].

This workshop has a Workshop Code of Conduct.

Download all of these materials [https://github.com/ngs-docs/angus/archive/2015.zip] or visit the GitHub repository [https://github.com/ngs-docs/angus/tree/2015].

Meal Times: Breakfast 7-9, Lunch 12-1, Dinner 6-7 (Unless noted below)

This year we also ran a third week workshop focused on intermediate and
advanced skills; please see the schedule at Week 3.

	Day
	Schedule

	Monday 8/10
	
	1:30pm lecture: Welcome! (Titus)

	3pm: Getting started with Amazon EC2

	7pm: Running command-line BLAST

	8pm: Research presentations

	Tuesday 8/11
	
	Tutorial Day 2 – Command line & quality control

	9:15am lecture: Sequencing considerations (Titus)

	11:00am Assessment (Bob Drost)

	Lunch at McCrary 12pm - 1pm

	1:15pm tutorial, background PDF and Quality Trimming (Matt)

	Evening firepit social

	Wed 8/12
	
	9:15am lecture, Mapping and assembly basics (Adina)

	10:30am tutorial, BASH for Genomics (Amanda)

	Lunch at McCrary 12pm - 1pm

	1:15pm tutorial, Variant calling (Adina)

	7:15pm lecture, Teach me scripting final script

	8:30pm student presentations

	Thursday 8/13
	
	9:15am lecture, Genome assembly and analysis (Erich)

	10:15am lecture, Genome assembly exercise (Titus)

	Lunch at McCrary 12pm - 1pm

	1:15pm tutorial, Assembling E. coli sequences with SPAdes (Titus)

	5:30pm leave for Kalamazoo Bells [http://bellsbeer.com/eccentric-cafe/menu] (No dinner at McCrary)

	Friday 8/14
	
	9:15am, lecture/tutorial, Intro to R (Amanda)

	Lunch at McCrary 12pm - 1pm

	1:15pm tutorial, So you want to get some sequencing data out of NCBI? (Adina)

	7:15pm tutorial, Automating Kmer Abundance Counts GitHub, K-mers, and Programming Python with Adrienne [https://github.com/ahoarfrost/wand]

	Saturday 8/15
	
	9:15am, Kmerology

	10:15am, tutorial, UNIX WIZARDRY

	Lunch at McCrary 12pm - 1pm

	1:15pm, lecture, long read sequencing (Torsten Seeman)

	Takeout Dinner on the island

	Sunday 8/16
	
	Free Day

	“Brunch” at McCrary 12pm - 1pm

	BBQ Dinner on the island

	Monday 8/17
	
	9:15am lecture/tutorial, mRNAseq Trinity and Transcriptome Evaluation (Matt)

	10:30am lecture, mRNA stats (Ian)

	1:15pm Transrate [https://github.com/ngs-docs/angus/blob/2015/transrate.rst] (Meg)

	1:45pm lecture, mRNA stats (Ian)

	3:15pm tutorial, RNA-seq: mapping to a reference genome with tophat and counting with HT-seq (Chris)

	Tuesday 8/18
	
	9:15am lecture, mRNAseq differential expression (Ian)

	10:30 R tutorial [https://github.com/ngs-docs/angus/blob/2015/R_Introductory_tutorial_2015.md] (Meg and Ian)

	
	1:15pm Tutorial, Differential expression analysis using DESeq2 (Chris)

	drosophila_rnaseq_counts (Chris)

	2:45 journal club, Gilad and Mizrahi-Man, 2015 [http://f1000research.com/articles/4-121/v1]. A reanalysis of mouse ENCODE comparative gene expression data.

	Wed 8/19
	
	9:15am lecture, Functional Annotation of transcripts

	10:15am Assembly quality assessment (Transdecoder) (Meg & Mattt)

	1:00pm practical, Analyzing nanopore data (Nick Loman)

	Evening, Twitter? More nanopore? Free work time? Kallisto and Sleuth (Matt)

	Thursday 8/20
	
	9:15am activity, Self Guided Transcriptome Assembly Exercise (Matt) and Prokka (Torsten)

	1:15pm Assessment (Julie)

	2pm: GitHub practical: Using GitHub repositories to store your scripts and Prokka Bacterial genome annotation using Prokka

	BBQ Dinner on the island

	social

	Friday 8/21
	
	9:15-9:45 closing lecture (Titus)

	10am discussion about class; more stuff

	Links:
Opinionated guides to NGS [http://davis-assembly-masterclass-2013.readthedocs.org/en/latest/outputs/index.html] /
Software Carpentry [http://software-carpentry.org]

Dramatis personae

Instructors:

	C Titus Brown

	Chris Chandler

	Ian Dworkin

	Adina Howe

	Matt MacManes

	Meg Staton

TAs:

	Amanda Charbonneau

	Lisa Cohen

	Ryan Williams

	Phil Brooks

Lecturers:

	Nick Loman

	Torsten Seemann

	Erich Schwarz

She Who Drives Many Places:

	Jessica Mizzi

Papers and References

Books

	Practical Computing for Biologists [http://practicalcomputing.org/]

This is a highly recommended book for people looking for a systematic
presentation on shell scripting, programming, UNIX, etc.

RNAseq

	Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks [http://www.ncbi.nlm.nih.gov/pubmed/22383036], Trapnell et al.,
Nat. Protocols.

One paper that outlines a pipeline with the tophat, cufflinks, cuffdiffs and
some associated R scripts.

	Statistical design and analysis of RNA sequencing
data. [http://www.ncbi.nlm.nih.gov/pubmed/20439781], Auer and
Doerge, Genetics, 2010.

	A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. [http://www.ncbi.nlm.nih.gov/pubmed/?term=22965124] Nookaew et al., Nucleic Acids Res. 2012.

	Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments [http://www.ncbi.nlm.nih.gov/pubmed/?term=22998089] Vijay et al., 2012.

	Computational methods for transcriptome annotation and quantification using RNA-seq [http://www.ncbi.nlm.nih.gov/pubmed/21623353], Garber et al., Nat. Methods, 2011.

	Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. [http://www.ncbi.nlm.nih.gov/pubmed/?term=20167110], Bullard et al., 2010.

	A comparison of methods for differential expression analysis of RNA-seq data [http://www.biomedcentral.com/1471-2105/14/91], Soneson and Delorenzi, BMC Bioinformatics, 2013.

	Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. [http://www.ncbi.nlm.nih.gov/pubmed/?term=22872506], Wagner et al., Theory Biosci, 2012. Also see this blog post [http://blog.nextgenetics.net/?e=51] explaining the paper in detail.

Computing and Data

	A Quick Guide to Organizing Computational Biology Projects [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000424], Noble, PLoS Comp Biology, 2009.

	Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of Statistical Results [http://software-carpentry.org/blog/2012/05/the-most-important-scientific-result-published-in-the-last-year.html], Wicherts et al., PLoS One, 2011.

	Got replicability? [http://econjwatch.org/articles/got-replicability-the-journal-of-money-credit-and-banking-archive], McCullough, Economics in Practice, 2007.

Also see this great pair of blog posts on organizing projects [http://nicercode.github.io/blog/2013-04-05-projects/] and research workflow [http://carlboettiger.info/2012/05/06/research-workflow.html].

Links

Humor

	Data Sharing and Management Snafu in 3 Short Acts [http://www.youtube.com/watch?v=N2zK3sAtr-4&feature=youtu.be]

Resources

	Biostar [http://biostars.org]

A high quality question & answer Web site.

	SEQanswers [http://seqanswers.com/]

A discussion and information site for next-generation sequencing.

	Software Carpentry lessons [http://software-carpentry.org/4_0/index.html]

A large number of open and reusable tutorials on the shell, programming,
version control, etc.

Blogs

	http://www.genomesunzipped.org/

Genomes Unzipped.

	http://ivory.idyll.org/blog/

Titus’s blog.

	http://bcbio.wordpress.com/

Blue Collar Bioinformatics

	http://massgenomics.org/

Mass Genomics

	http://blog.nextgenetics.net/

Next Genetics

	http://gettinggeneticsdone.blogspot.com/

Getting Genetics Done

	http://omicsomics.blogspot.com/

Omics! Omics!

	http://lab.loman.net/

Nick Loman’s lab notebook

Complete table of contents

	Day 1 - Getting started with Amazon
	Getting started with Amazon EC2
	Details!
	Start up an EC2 instance
	Log in

	Select your zone

	Select the machine operating system to boot

	Choose the machine size

	Confirm and launch

	(First time through) generate a new key pair

	(Next times through) select an existing key pair

	Click on View Instances

	Select the public DNS name for later use

	Logging into your new instance “in the cloud” (Windows version)
	Install mobaxterm

	Start a new session

	Fill in session settings

	Specify the session key

	Click OK

	Logging into your new instance “in the cloud” (Mac version)

	Terminating your instance

	Amazon Web Services reference material

	Running command-line BLAST
	Updating the software on the machine

	Running BLAST

	Day 2 – Command line & quality control

	Variant calling
	Booting an Amazon AMI

	Updating the operating system

	Install software

	Download data

	Do the mapping

	Visualizing alignments

	Counting alignments

	Calling SNPs

	Questions/discussion items

	Interval Analysis and Visualization
	Data collection

	Running bedtools

	Understanding the SAM format

	Control Flow and loops in R
	Control Flow
	The standard if else

	ifelse()

	Other vectorized ways of control flow.

	Simple loops
	while() function..

	for loop

	So for the for loop we would do the following:

	More avoiding loops

	The step above creates a vector of n NA’s. They will be replaced sequentially with the random numbers as we generate them (using a function like the above one).

	Variant calling and exploration of polymorphisms
	## Getting the data and installing extra packages

	Let’s do another round of variant calling

	Variant exploration with Bioconductor

	Quality control

	A complete de novo assembly and annotation protocol for mRNASeq
	Switching to root

	Updating the software on the machine

	Downloading the sample data

	Starting on the protocols

	Actually using the BLAST Web server

	Assembly with SOAPdenovo-Trans

	Mapping and Counting

	Analyzing RNA-seq counts with DESeq

	RNA-seq: mapping to a reference genome with tophat and counting with HT-seq

	RNA-seq: mapping to a reference genome with BWA and counting with HTSeq

	Booting an Amazon AMI

	Updating the operating system

	Install software

	Preparing the reference

	Mapping
	Optional - Script these steps

	Genome comparison and phylogeny
	Interactive visual genome comparison with Mauve

	Running a genome alignment

	Booting an Amazon AMI

	Logging in & updating the operating system

	Packages to install

	Getting the E. coli genome data

	What is the nearest reference genome?

	Ordering the assembly contigs against a nearby reference

	Making a phylogeny of many E. coli assemblies

	From tree file to figures

	Automation, scripts, git, and GitHub
	Automation and scripts

	Some git koans
	Forking a repository on github

	Create a new file on github and edit it, then pull

	Edit local file and push to github

	Create a new repository; add some files to it.

	MG-RAST and its API
	Example Usage

	Exercise - Download

	Working with Annotations

	A note on JSON

	Exercise - linking MG-RAST to taxonomy

	So you want to get some sequencing data out of NCBI?
	The challenge

	What is an API and how does it relate to NCBI?

	Automating with an API

	Exercise - Downloading data

	Comment on Genbank files

	Challenge:

	Looking at k-mer abundance distributions

	PacBio Tutorial

	RNASeq Transcript Mapping and Counting (BWA and HtSeq Flavor)
	Booting an Amazon AMI

	Updating the operating system

	Install software

	Evaluating the quality of your short reads, and trimming them
	Logging in

	Packages to install

	Getting some data

	Trimming and quality evaluation of your sequences

	Getting started with Amazon EC2
	Details!
	Start up an EC2 instance
	Log in

	Select your zone

	Select the machine operating system to boot

	Choose the machine size

	Confirm and launch

	(First time through) generate a new key pair

	(Next times through) select an existing key pair

	Click on View Instances

	Select the public DNS name for later use
	Next steps

	Logging into your new instance “in the cloud” (Windows version)
	Install mobaxterm

	Start a new session

	Fill in session settings

	Specify the session key

	Click OK

	Logging into your new instance “in the cloud” (Mac version)

	Terminating your instance

	Amazon Web Services reference material

	Instructor’s Guide to ANGUS Materials
	Licensing

	Workshop Code of Conduct
	Need Help?

	The Quick Version

	The Less Quick Version

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Day 1 - Getting started with Amazon

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Day 1 - Getting started with Amazon

We’re going to start by getting you set up on Amazon Web Services.
For the duration of the course, we’ll be running analyses on computers
we rent from Amazon; this has a number of benefits that we’ll discuss
in the lecture.

	Getting started with Amazon EC2
	Details!

	Running command-line BLAST
	Updating the software on the machine

	Running BLAST

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Getting started with Amazon EC2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Day 1 - Getting started with Amazon

Getting started with Amazon EC2

Summary:

	Go to http://aws.amazon.com/, log in, then “EC2” (upper left);

	Select “Launch instance”;

	Select “Ubuntu 14.04” from the list;

	Select “m3.xlarge” from the list (towards bottom of “General purpose”);

	Click “Review and launch”

	Select “Launch”;

	If your first time through, create a key pair; otherwise select existing;

	Click “launch instance”

Details!

	Start up an EC2 instance
	Log in

	Select your zone

	Select the machine operating system to boot

	Choose the machine size

	Confirm and launch

	(First time through) generate a new key pair

	(Next times through) select an existing key pair

	Click on View Instances

	Select the public DNS name for later use

	Logging into your new instance “in the cloud” (Windows version)
	Install mobaxterm

	Start a new session

	Fill in session settings

	Specify the session key

	Click OK

	Logging into your new instance “in the cloud” (Mac version)

	Terminating your instance

A final checklist:

	You have a green EC2 instance!

	You used ubuntu 14.04;

	You’re in US East (Virginia);

	You didn’t start a micro instance (m3.xlarge, or bigger);

Amazon Web Services reference material

Instance types [http://aws.amazon.com/ec2/instance-types/]

Instance costs [http://aws.amazon.com/ec2/pricing/]

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Start up an EC2 instance

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Day 1 - Getting started with Amazon

 	Getting started with Amazon EC2

Start up an EC2 instance

Log in

Go to ‘https://aws.amazon.com‘ in a Web browser.

Select ‘My Account/Console’ menu option ‘AWS Management Console.”

Log in with your username & password.

Click on EC2 (upper left).

[image: ../_images/ec2-1.png]

Select your zone

Many of the resources that we use are hosted by Amazon on the East coast.
Make sure that your dashboard has ‘N. Virginia’ on the upper right.

Then click on Launch Instance.

[image: ../_images/ec2-2.png]

Select the machine operating system to boot

Find the “Ubuntu Server 14.04” image in the first list to show up.

[image: ../_images/ec2-3.png]

Choose the machine size

Select ‘General purpose’, ‘m3.xlarge’, and then ‘Review and Launch’.

[image: ../_images/ec2-4.png]

Confirm and launch

Review the details (ignore the warnings!) and click on Launch.

[image: ../_images/ec2-5.png]

(First time through) generate a new key pair

If you don’t have any key pairs, enter a key pair name and
then download a key pair. Then click Launch Instance.

[image: ../_images/ec2-6.png]

(Next times through) select an existing key pair

Select a key pair and click ‘Launch’.

[image: ../_images/ec2-7.png]

Click on View Instances

[image: ../_images/ec2-8.png]

Select the public DNS name for later use

[image: ../_images/ec2-9.png]

Next steps

Logging into your new instance “in the cloud” (Mac version) or Logging into your new instance “in the cloud” (Windows version)

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Logging into your new instance “in the cloud” (Windows version)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Day 1 - Getting started with Amazon

 	Getting started with Amazon EC2

Logging into your new instance “in the cloud” (Windows version)

OK, so you’ve created a running computer. How do you get to it?

The main thing you’ll need is the network name of your new computer.
To retrieve this, go to the instance view and click on the instance,
and find the “Public DNS”. This is the public name of your computer
on the Internet.

Copy this name, and connect to that computer with ssh under the username
‘ubuntu’, as follows.

—

Install mobaxterm

First, download mobaxterm [http://mobaxterm.mobatek.net/download.html] and
run it.

Start a new session

[image: ../_images/ec2-moba-1.png]

Fill in session settings

Put in your hostname (should be
ec2-XXX-YYY-ZZZ-AAA.compute-1.amazon.aws.com), select
‘specify username’, and enter ‘ubuntu’.

[image: ../_images/ec2-moba-2.png]

Specify the session key

Copy the downloaded .pem file onto your primary hard disk (generally
C:) and the put in the full path to it.

[image: ../_images/ec2-moba-3.png]

Click OK

Victory! (?)

[image: ../_images/ec2-moba-4.png]

Return to index: Getting started with Amazon EC2

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Logging into your new instance “in the cloud” (Mac version)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Day 1 - Getting started with Amazon

 	Getting started with Amazon EC2

Logging into your new instance “in the cloud” (Mac version)

OK, so you’ve created a running computer. How do you get to it?

The main thing you’ll need is the network name of your new computer.
To retrieve this, go to the instance view and click on the instance,
and find the “Public DNS”. This is the public name of your computer
on the Internet.

Copy this name, and connect to that computer with ssh under the username
‘ubuntu’, as follows.

First, find your private key file; it’s the .pem file you downloaded
when starting up your EC2 instance. It should be in your Downloads
folder. Move it onto your desktop and rename it to ‘amazon.pem’.

Next, start Terminal (in Applications... Utilities...) and type:

chmod og-rwx ~/Desktop/amazon.pem

to set the permissions on the private key file to “closed to all evildoers”.

Then type:

ssh -i ~/Desktop/amazon.pem ubuntu@ec2-???-???-???-???.compute-1.amazonaws.com

Here, you’re logging in as user ‘ubuntu’ to the machine
‘ec2-174-129-122-189.compute-1.amazonaws.com’ using the authentication
key located in ‘amazon.pem’ on your Desktop.

Note, you have to replace the stuff after the ‘@’ sign with the name
of the host; see the red circle in:

[image: ../_images/ec2-dashboard-instance-name.png]

At the end you should see text and a prompt that look like this:

[image: ../_images/win-putty-41.png]

Return to index: Getting started with Amazon EC2

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Terminating your instance

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Day 1 - Getting started with Amazon

 	Getting started with Amazon EC2

Terminating your instance

Be sure to terminate your instance(s) after transferring off any data
that you want to keep!

To terminate your instance, select the instance you want to terminate,
and then go to the ‘Actions’ menu and select ‘Instance actions’, ‘terminate’:

[image: ../_images/ec2-terminate.png]
Wait a minute or two to be sure that the instance state changes to
“terminated”:

[image: ../_images/ec2-terminate-2.png]

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Running command-line BLAST

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Day 1 - Getting started with Amazon

Running command-line BLAST

The goal of this tutorial is to run you through a demonstration of the
command line, which you may not have seen or used much before.

Start up an m1.xlarge Amazon EC2 instance.

All of the commands below can copy/pasted.

Updating the software on the machine

Copy and paste the following commands

sudo apt-get update && sudo apt-get -y install python ncbi-blast+

(make sure to hit enter after the paste – sometimes the last line doesn’t
paste completely.)

This updates the software list and installs the Python programming
language and NCBI BLAST+.

Running BLAST

First! We need some data. Let’s grab the mouse and zebrafish RefSeq
protein data sets from NCBI, and put them in /mnt, which is the
scratch disk space for Amazon machines

sudo chmod a+rwxt /mnt
cd /mnt

curl -O ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot/mouse.1.protein.faa.gz
curl -O ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot/mouse.2.protein.faa.gz
curl -O ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot/mouse.3.protein.faa.gz

curl -O ftp://ftp.ncbi.nih.gov/refseq/D_rerio/mRNA_Prot/zebrafish.1.protein.faa.gz

If you look at the files in the current directory, you should see four
files, along with a directory called lost+found which is for system
information:

ls -l

should show you:

total 28904
drwx------ 2 root root 16384 Nov 2 2014 lost+found
-rw-rw-r-- 1 ubuntu ubuntu 8132346 Aug 10 21:44 mouse.1.protein.faa.gz
-rw-rw-r-- 1 ubuntu ubuntu 8091255 Aug 10 21:44 mouse.2.protein.faa.gz
-rw-rw-r-- 1 ubuntu ubuntu 565224 Aug 10 21:44 mouse.3.protein.faa.gz
-rw-rw-r-- 1 ubuntu ubuntu 12735506 Aug 10 21:44 zebrafish.1.protein.faa.gz

All four of the files are FASTA protein files (that’s what the .faa
suggests) that are compressed by gzip (that’s what the .gz suggests).

Uncompress them

gunzip *.faa.gz

and let’s look at the first few sequences in the file:

head mouse.1.protein.faa

These are protein sequences in FASTA format. FASTA format is something
many of you have probably seen in one form or another – it’s pretty
ubiquitous. It’s just a text file, containing records; each record
starts with a line beginning with a ‘>’, and then contains one or more
lines of sequence text.

Let’s take those first two sequences and save them to a file. We’ll
do this using output redirection with ‘>’, which says “take
all the output and put it into this file here.”

head -11 mouse.1.protein.faa > mm-first.fa

So now, for example, you can do ‘cat mm-first.fa’ to see the contents of
that file (or ‘less mm-first.fa’).

Now let’s BLAST these two sequences against the entire zebrafish
protein data set. First, we need to tell BLAST that the zebrafish
sequences are (a) a database, and (b) a protein database. That’s done
by calling ‘makeblastdb’

makeblastdb -in zebrafish.1.protein.faa -dbtype prot

Next, we call BLAST to do the search

blastp -query mm-first.fa -db zebrafish.1.protein.faa

This should run pretty quickly, but you’re going to get of output!!
To save it to a file instead of watching it go past on the screen,
do:

blastp -query mm-first.fa -db zebrafish.1.protein.faa -out mm-first.x.zebrafish.txt

and then you can ‘page’ through this file at your leisure by typing:

less mm-first.x.zebrafish.txt

(Type spacebar to move down, and ‘q’ to get out of paging mode.)

Let’s do some more sequences:

head -500 mouse.1.protein.faa > mm-second.fa
blastp -query mm-second.fa -db zebrafish.1.protein.faa -out mm-second.x.zebrafish.txt

will compare the first 83 sequences. You can look at the output file with:

less mm-second.x.zebrafish.txt

(and again, type ‘q’ to get out of paging mode.)

Notes:

	you can execute multiple commands at a time;

	You should see a warning -

Selenocysteine (U) at position 310 replaced by X

what does this mean?

	why did it take longer to BLAST mm-second.fa than mm-first.fa?

Things to mention and discuss:

	blastp options and -help.

	command line options, more generally - why??

	automation rocks!

Reminder: shut down your instance!

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Day 2 – Command line & quality control

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Day 2 – Command line & quality control

Before following the procedures below, go through the process of
starting up an ec2 instance and logging in – see Day 1 - Getting started with Amazon for
details. Make sure you follow the Dropbox instructions, too!

The lecture will start at 9:15, the first tutorial
(Running command-line BLAST) will start at 10:30, and the
second tutorial will start at 1:30.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Variant calling

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Variant calling

The goal of this tutorial is to show you the basics of variant calling
using Samtools [http://samtools.sourceforge.net/].

We’ll be using data from one of Rich Lenski’s LTEE papers, the one on
the evolution of citrate consumption in LTEE [http://www.nature.com/nature/journal/v489/n7417/full/nature11514.html].

Booting an Amazon AMI

Start up an Amazon computer (m1.large or m1.xlarge) using AMI
ami-7607d01e (see Start up an EC2 instance and
amazon/starting-up-a-custom-ami).

Log in with Windows or
from Mac OS X.

Updating the operating system

Copy and paste the following two commands

apt-get update
apt-get -y install screen git curl gcc make g++ python-dev unzip \
 default-jre pkg-config libncurses5-dev r-base-core \
 r-cran-gplots python-matplotlib sysstat

to update the computer with all the bundled software you’ll need.

Install software

First, we need to install the BWA aligner [http://bio-bwa.sourceforge.net/]:

cd /root
wget -O bwa-0.7.10.tar.bz2 http://sourceforge.net/projects/bio-bwa/files/bwa-0.7.10.tar.bz2/download

tar xvfj bwa-0.7.10.tar.bz2
cd bwa-0.7.10
make

cp bwa /usr/local/bin

Also install samtools:

apt-get -y install samtools

Download data

Download the reference genome and the resequencing reads:

cd /mnt

curl -O http://athyra.idyll.org/~t/REL606.fa.gz
gunzip REL606.fa.gz

curl -O ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR098/SRR098038/SRR098038.fastq.gz

Note, this last URL is the “Fastq files (FTP)” link from the European
Nucleotide Archive (ENA) for this sample:
http://www.ebi.ac.uk/ena/data/view/SRR098042.

Do the mapping

Now let’s map all of the reads to the reference. Start by indexing the
reference genome:

cd /mnt

bwa index REL606.fa

Now, do the mapping of the raw reads to the reference genome:

bwa aln REL606.fa SRR098038.fastq.gz > SRR098038.sai

Make a SAM file (this would be done with ‘sampe’ if these were paired-end
reads):

bwa samse REL606.fa SRR098038.sai SRR098038.fastq.gz > SRR098038.sam

This file contains all of the information about where each read hits
on the reference.

Next, index the reference genome with samtools:

samtools faidx REL606.fa

Convert the SAM into a BAM file:

samtools import REL606.fa.fai SRR098038.sam SRR098038.bam

Sort the BAM file:

samtools sort SRR098038.bam SRR098038.sorted

And index the sorted BAM file:

samtools index SRR098038.sorted.bam

Visualizing alignments

At this point you can visualize with samtools tview or Tablet [http://bioinf.scri.ac.uk/tablet/].

‘samtools tview’ is a text interface that you use from the command
line; run it like so:

samtools tview SRR098038.sorted.bam REL606.fa

The ‘.’s are places where the reads align perfectly in the forward direction,
and the ‘,’s are places where the reads align perfectly in the reverse
direction. Mismatches are indicated as A, T, C, G, etc.

You can scroll around using left and right arrows; to go to a specific
coordinate, use ‘g’ and then type in the contig name and the position.
For example, type ‘g’ and then ‘rel606:553093<ENTER>’ to go to
position 553093 in the BAM file.

Use ‘q’ to quit.

For the Tablet viewer [http://bioinf.scri.ac.uk/tablet/], click on
the link and get it installed on your local computer. Then, start it
up as an application. To open your alignments in Tablet, you’ll need
three files on your local computer: REL606.fa, SRR098042.sorted.bam,
and SRR098042.sorted.bam.bai. You can copy them over using Dropbox,
for example.

Counting alignments

This command:

samtools view -c -f 4 SRR098038.bam

will count how many reads DID NOT align to the reference (214518).

This command:

samtools view -c -F 4 SRR098038.bam

will count how many reads DID align to the reference (6832113).

And this command:

gunzip -c SRR098038.fastq.gz | wc

will tell you how many lines there are in the FASTQ file (28186524).
Reminder: there are four lines for each sequence.

Calling SNPs

You can use samtools to call SNPs like so:

samtools mpileup -uD -f REL606.fa SRR098038.sorted.bam | bcftools view -bvcg - > SRR098038.raw.bcf

(See the ‘mpileup’ docs here [http://samtools.sourceforge.net/mpileup.shtml].)

Now convert the BCF into VCF:

bcftools view SRR098038.raw.bcf > SRR098038.vcf

You can check out the VCF file by using ‘tail’ to look at the bottom:

tail *.vcf

Each variant call line consists of the chromosome name (for E. coli
REL606, there’s only one chromosome - rel606); the position within the
reference; an ID (here always ‘.’); the reference call; the variant
call; and a bunch of additional information about

Again, you can use ‘samtools tview’ and then type (for example) ‘g’
‘rel606:4616538’ to go visit one of the positions. The format for the
address to go to with ‘g’ is ‘chr:position’.

You can read more about the VCF file format here [http://www.1000genomes.org/node/101].

Questions/discussion items

Why so many steps?

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Interval Analysis and Visualization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Interval Analysis and Visualization

The results generate below are based on a question posed by a participant in the course.
She wanted to know how well contigs of an unfinished genomic build of and ecoli strain
match the common (K-12 strain MG1655) genomic build.

Download the results from:

http://apollo.huck.psu.edu/data/ms115.zip

How did we get the results in the file above? A short description follows:

Data collection

The partial genomic build is located at:

http://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=161608

From this we downloaded the summary file code/ADTL01.txt
that happens to be a tab delimited file that lists accession numbers.
We then wrote a very simple program code/getdata.py to parse
the list of accessions and download the data like so

requires BioPython
from Bio import Entrez
Entrez.email = "A.N.Other@example.com"
stream = file("ADTL01.txt")
stream.next()

for line in stream:
 elems = line.strip().split()
 val = elems[1]
 handle = Entrez.efetch(db="nucleotide", id=val, rettype="fasta", retmode="text")
 fp = file("data/%s.fa" % val, 'wt')
 fp.write(handle.read())
 fp.close()

Finally we merged all data with:

cat *.fa > MS115.fa

Then we went hunting for the EColi genome, we found it here:

http://www.genome.wisc.edu/sequencing/updating.htm

Turns out that this site only distributes a GBK (Genbank file).
We now need to extract the information from the
GBK file to FASTA (genome) and GFF (genomic feature) file. For this we need to
install the ReadSeq program:

http://iubio.bio.indiana.edu/soft/molbio/readseq/java/

Once we have this we typed:

GBK to GFF format
java -jar readseq.jar -inform=2 -f 24 U00096.gbk

GBK to FASTA
java -jar readseq.jar -inform=2 -f 24 U00096.gbk

This will create the files U00096.gbk.fasta and U00096.gbk.gff

Now lets map the ms115.fa contigs to the U00096.fa reference:

bwa index U00096.fa
bwa mem U00096.fa ms115.fa | samtools view -bS - | samtools sort - U00096

will produce the U00096.bam file. We have converted the U00096.bam to BED format
via the:

bedtools bamtobed -i U00096.bam > U00096.bed

Visualizing the data

Download and run IGV

http://www.broadinstitute.org/igv/

Create a custom genome via Genomes -> Create .genome options

We will now visualize the BAM, GFF and BED files and discuss the various aspects of it.

Running bedtools

Install bedtools:

sudo apt-get bedtools

This works best if you store your files in Dropbox, that way you can
edit the file on your computer then load them up on your IGV instance.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Understanding the SAM format

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Understanding the SAM format

Log into your instance, create a new directory, navigate to that directory:

cd /mnt
 mkdir sam
 cd sam

 # Get the makefile.
 wget https://raw.githubusercontent.com/ngs-docs/angus/2014/files/Makefile-samtools -O Makefile

A series of exercises will show what the SAM format is and how it changes when
the query sequence is altered and how that reflects in the output.

Also, for the speed of result generation here is a one liner to generate a bamfile:

One line bamfile generation.
bwa mem index/sc.fa query.fa | samtools view -bS - | samtools sort - results

This will produce the results.bam output.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Control Flow and loops in R

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Control Flow and loops in R

Control Flow

The standard if else

p.test <- function(p) {
 if (p <= 0.05)
 print("yeah!!!!") else if (p >= 0.9)
 print("high!!!!") else print("somewhere in the middle")
}

Now pick a number and put it in p.test

p.test(0.5)

[1] "somewhere in the middle"

ifelse()

A better and vectorized way of doing this is ifelse(test, yes, no)
function. ifelse() is far more useful as it is vectorized.

p.test.2 <- function(p) {
 ifelse(p <= 0.05, print("yippee"), print("bummer, man"))
}

Test this with the following sequence. See what happens if you use
if vs. ifelse().

x <- runif(10, 0, 1)
x

[1] 0.27332 0.14155 0.89000 0.07041 0.79419 0.25013 0.02324 0.86766
[9] 0.41114 0.56165

Now try it with p.test() (uses if).

p.test(x)

Warning: the condition has length > 1 and only the first element will be used
Warning: the condition has length > 1 and only the first element will be used

[1] "somewhere in the middle"

Now try it with p.test.2()

p.test.2(x)

[1] "yippee"
[1] "bummer, man"

[1] "bummer, man" "bummer, man" "bummer, man" "bummer, man" "bummer, man"
[6] "bummer, man" "yippee" "bummer, man" "bummer, man" "bummer, man"

Other vectorized ways of control flow.

There are many times that you may think you need to use an if with
(iterating with a for loop... see below), or ifelse, but there may be
far better ways.

For instance, say you are doing some simulations for a power analysis,
and you want to know how often your simulation gives you a p-value less
than 0.05.

p.1000 <- runif(n = 1000, min = 0, max = 1)

The line above generates 1000 random values between 0-1, which we will
pretend are our p-values for differential expression from our
simulation.

You may try and count how often it less than 0.05

p.ifelse <- ifelse(p.1000 < 0.05, 1, 0) # If it is less than 0.05, then you get a 1, otherwise 0.

Our approximate false positives. Should be close to 0.05

sum(p.ifelse)/length(p.1000)

[1] 0.059

However the best and fastest way to accomplish this is to use the index,
by setting up the Boolean (TRUE/FALSE) in the index of the vector.

length(p.1000[p.1000 < 0.05])/length(p.1000)

[1] 0.059

Same number, faster and simpler computation.

Simple loops

while() function..

I tend to avoid these, so you will not see them much here

i <- 1
while (i <= 10) {
 print(i)
 i <- i + 0.5
}

[1] 1
[1] 1.5
[1] 2
[1] 2.5
[1] 3
[1] 3.5
[1] 4
[1] 4.5
[1] 5
[1] 5.5
[1] 6
[1] 6.5
[1] 7
[1] 7.5
[1] 8
[1] 8.5
[1] 9
[1] 9.5
[1] 10

for loop

If I run a loop I most often use for(){} automatically iterates
across a list (in this case the sequence from 1:10).

for (i in 1:10) {
 print(i)
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10

If you do not want to use integers, how might you do it using the for()?

for (i in seq(from = 1, to = 5, by = 0.5)) {
 print(i)
}

[1] 1
[1] 1.5
[1] 2
[1] 2.5
[1] 3
[1] 3.5
[1] 4
[1] 4.5
[1] 5

Using strings is a bit more involved in R, compared to other languages.
For instance the following does not do what you want:

.. code:: r

	for (letter in “word”) {

	print(letter)

}

[1] "word"

(try letters for a hoot.)

Instead in R, we have to split the word “word” into single characters
using strsplit(), i.e:

.. code:: r

strsplit(“word”, split = “”)

[[1]]
[1] "w" "o" "r" "d"

So for the for loop we would do the following:

for (letter in strsplit("word", split = "")) {
 print(letter)
}

[1] "w" "o" "r" "d"

More avoiding loops

Many would generate random numbers like so.

for (i in 1:100) {
 print(rnorm(n = 1, mean = 0, sd = 1))
}

[1] -0.1837
[1] -0.9313
[1] 1.648
[1] -0.6964
[1] 0.2112
[1] 0.3441
[1] 1.036
[1] 0.7439
[1] 0.5859
[1] -0.6087
[1] -0.4014
[1] 1.44
[1] -0.3906
[1] -1.861
[1] -0.739
[1] -1.204
[1] 0.07794
[1] -1.65
[1] 1.261
[1] 0.6753
[1] 0.6736
[1] 0.3238
[1] -1.316
[1] 0.2965
[1] 1.499
[1] 0.4326
[1] 0.4488
[1] 0.8873
[1] -1.304
[1] -0.347
[1] 0.3491
[1] 0.24
[1] 0.1425
[1] -0.2785
[1] -0.5072
[1] -1.775
[1] -0.04051
[1] 0.9452
[1] 0.3322
[1] -0.01994
[1] -0.2308
[1] -0.4053
[1] -0.5685
[1] -1.631
[1] -0.1484
[1] 0.434
[1] 1.653
[1] 1.57
[1] 0.1308
[1] -1.059
[1] -0.7157
[1] -0.8316
[1] 0.06561
[1] 0.8243
[1] 0.1841
[1] 1.048
[1] 0.1612
[1] -0.9553
[1] -0.7569
[1] -0.288
[1] -1.837
[1] 0.7301
[1] -2.103
[1] -1.869
[1] -1.298
[1] -1.077
[1] -0.2139
[1] -0.9419
[1] 0.4694
[1] -1.344
[1] -0.08514
[1] -2.055
[1] -0.803
[1] -0.7281
[1] 1.778
[1] -1.116
[1] 1.33
[1] 0.1535
[1] -2.897
[1] 0.7305
[1] 1.228
[1] 1.697
[1] -0.8183
[1] -1.013
[1] -0.634
[1] -0.942
[1] -0.3395
[1] 0.1396
[1] 1.022
[1] 0.9868
[1] -0.7778
[1] 1.075
[1] -0.1029
[1] 0.2644
[1] 0.01165
[1] 0.8025
[1] -1.24
[1] -0.8865
[1] 0.981
[1] 0.5333

We are cycling through and generating one random number at each
iteration. Look at the indices, and you can see we keep generating
vectors of length 1.

better/cleaner/faster to generate them all at one time

rnorm(n = 100, mean = 0, sd = 1)

[1] -0.08683 -1.55262 -1.16909 0.30451 -1.14555 0.76682 0.12643
[8] -0.61174 -0.29103 -0.10707 -0.03397 -0.05926 0.27294 1.32693
[15] -0.53284 1.83234 0.43959 -0.88991 0.25383 0.96709 -0.23210
[22] -1.00190 -1.32289 1.80030 1.15272 -1.82907 0.75989 1.35966
[29] 0.53943 0.01429 -0.58707 -0.11886 -0.70367 -2.38988 0.08033
[36] -0.22795 -0.62166 -0.19832 -1.95990 -0.85127 0.94236 0.37771
[43] 0.32617 -0.08393 -0.54506 -2.58781 -0.58433 0.20985 -0.41613
[50] 0.60527 0.51713 1.57950 -0.61079 -0.28564 -0.16444 0.55007
[57] 0.57258 0.58513 -0.86728 -0.81185 -0.29333 -1.23935 0.46169
[64] -1.53586 -0.32583 0.17629 -0.85579 1.04989 1.22120 1.53359
[71] -2.37276 1.44393 1.47506 0.40110 -0.10157 0.35485 -0.72068
[78] -1.27910 0.63152 -0.65216 1.60160 0.27109 0.50904 -1.00531
[85] 0.76743 -0.78954 -0.01159 1.06944 1.15661 -0.91031 1.54919
[92] -0.84334 2.19994 0.26716 0.02081 0.53577 0.07840 -0.79387
[99] -1.18941 1.24745

The not advisable approach

First we initialize a vector to store all of the numbers. Why do we
initialize this vector first?

n <- 1e+05
x <- rep(NA, n)

The step above creates a vector of n NA’s. They will be replaced sequentially with the random numbers as we generate them (using a function like the above one).

head(x)

[1] NA NA NA NA NA NA

Now we run the for loop.

for (i in 1:n) {
 x[i] <- rnorm(n = 1, mean = 0, sd = 1)
}

for each i in the index, one number is generated, and placed in x

head(x)

[1] 0.2848 -0.5432 1.1391 -1.0901 0.8515 0.5490

However this is computationally inefficient in R. Which has vectorized
operations.

system.time(

for (i in 1:n){
 x[i] <- rnorm(n=1, mean=0, sd=1)})

user system elapsed
0.562 0.023 0.584

We can also use the replicate function to do the same thing. Easier
syntax to write.

system.time(z <- replicate(n, rnorm(n = 1, mean = 0, sd = 1)))

user system elapsed
0.561 0.035 0.841

This is ~20% faster.

However, since R is vectorized, both of the will be far slower than:

system.time(y <- rnorm(n, 0, 1))

user system elapsed
0.010 0.000 0.011

About 65 times faster than the for loop

The general rule in R is that loops are slower than the apply family of
functions (for small to medium data sets, not true for very large data)
which are slower than vectorized computations.

LICENSE:
This documentation and all textual/g