


    
      
          
            
  
  
Next-Gen Sequence Analysis Workshop (2016)

This is the schedule for the 2016 MSU NGS course [http://bioinformatics.msu.edu/ngs-summer-course-2016]. All course communications will be organized around the Slack channel [https://anguscourse.slack.com].

This workshop has a Workshop Code of Conduct, do read it!

Download all of these materials [https://github.com/ngs-docs/angus/archive/2016.zip] or visit the GitHub repository [https://github.com/ngs-docs/angus/tree/2016].

Meal Times: Breakfast 7:45-8:45, Lunch 12-1, Dinner 6-7 (Unless noted below). See HERE [http://conference.kbs.msu.edu/conference-center/food-and-beverage-service/] for the menu and other info.







	Day
	Schedule




	Monday 8/8
	
	1:30pm lecture: Welcome! (Meg and Matt)

	2:30pm: Getting Started with AWS Getting started with Amazon EC2 (Matt)

	4pm: Intro to Linux Setup your AWS instance and UNIX Toolkit and Online Tutorial [http://rik.smith-unna.com/command_line_bootcamp/] (Matt)

	7pm tutorial, background PDF BLAST

	Running command-line BLAST (Meg)

	8pm: Instructor and TA Research presentations, socialize






	Tuesday 8/9
	
	Tutorial Day 2 – Intro to Linux & Quality control

	9:15am lecture: Sequencing basics (Matt)

	11:00am Assessment (Bob Drost)

	1:15pm tutorial, background PDF and Quality Trimming (Matt)

	3:00pm Opionated guide to making a computational notebook. (Matt and other people)

	Evening firepit social






	Wed 8/10
	
	9:15am lecture, mapping and variant calling lecture (Meg)

	10:00am practical Variant Calling, Variant calling (Meg)

	1:15pm LinuxBrew slides [http://sjackman.ca/linuxbrew-slides/#/] (Shaun)

	1:45pm practical, Installing Linuxbrew on AWS Ubuntu 14 Install Linuxbrew on your AWS instance (Torst)

	2:15pm tutorial, BASH for genomics, BASH for Genomics (Amanda)

	7:00pm Mapping Quest Map Quest (All)

	8:30pm student presentations (Part 1 ~3 minutes each)






	Thursday 8/11
	
	9:15am lecture, Intro to genome assembly [http://www.slideshare.net/torstenseemann/de-novo-genome-assembly-tseemann-imb-winter-school-2016-brisbane-au-4-july-2016] (Torst)

	10:15am Genome assembly practical [http://sjackman.ca/abyss-activity/]  (Shaun)

	1:15pm Genome assembly practical (continued)

	2:15pm lecture, De Bruijn graph assembly (Shaun)

	7:15pm Assembly challenge Assembly Quest (Matt)






	Friday 8/12
	
	9:15am Debrief of Assembly Quest marathon (Matt)

	9:30am lecture, Bacterial genome annotation (Torst)

	10:00am practical Prokka Bacterial genome annotation using Prokka (Torst)

	11:00am practical Species identification with Kraken Species identification with Kraken (Torst)

	1:15pm tutorial, Intro to R Intro to R (Amanda)

	6:00pm Thai food take out at Mcrary Hall

	7:30pm Mars Rover Challenge! [http://sjackman.ca/mars-rover/] (Shaun)

	8:30pm Finish up student presentations






	Saturday 8/13
	
	9:15am Population genetics lecture and practical (Sonal)

	10:30am practical, Population Genetics Tutorial (Sonal)

	1:15pm lecture, long read sequencing (Torst)

	2:00pm practical, Assessing and Assembling Nanopore data (Lisa)

	6:00pm BBQ on the island if nice out, in the classroom if not






	Sunday 8/14
	
	Free Day

	Brunch at McCrary 12pm - 1pm*

	Dinner field trip to Kalamazoo






	Monday 8/15
	
	9:15am , Transcriptome assembly & evaluation lecture and  Trinity and Transcriptome Evaluation (Matt)

	1:15pm Alignment / Mapping lecture [http://robpatro.com/redesign/AlignmentAndMapping.pdf] and practical [http://angus.readthedocs.io/en/2016/rob_map/tut.html] (Rob)

	6:30pm LATER DINNER TIME

	7:45pm: Twitter, Blogging and Bioinformatics (All)

	8:30pm: Finish up student presentations! (All)






	Tuesday 8/16
	
	9:15am Transcript quantification lecture [http://robpatro.com/redesign/Quantification.pdf] (Rob)

	10:30am practical Using Salmon for read counts [http://angus.readthedocs.io/en/2016/rob_quant/tut.html] (Rob)

	11:45pm lecture, mRNAseq differential expression (Ian)

	12:30pm Lunch (new later time)

	1:15pm Visualizing RNA-Seq counts with Degust [http://www.vicbioinformatics.com/degust/] (Torst)

	1:45pm mRNA stats (Ian)

	2:45pm practical Using DEseq2 for DGE [https://github.com/ngs-docs/angus/blob/2016/DeSeq2_Salmon_Tutorial.md] (Ian)

	6:00pm Dinner (back to original time)

	7:15pm Optional Arabidopsis - De novo assembly vs Reference Guided Assembly






	Wed 8/17
	
	9:15am lecture and Sourcing NCBI data including SRA practical [https://github.com/mestato/epp622/blob/master/ncbi.md] (Meg)

	10:15am More fun with R [https://github.com/MingChen0919/KBS_workshop_Michigan_2016/blob/master/fun_with_R.md] (Ming)

	12:00 Lunch

	Bonus Routes Through Differential Expression Analysis

	1:00pm UNIX Stuff UNIX Toolkit (All) [tentative]

	6:00pm Dinner

	7:15pm Work on your own data, ask questions..






	Thursday 8/18
	
	9:15am Open source your scripts with GitHub (Lisa) Using GitHub repositories to store your scripts

	11:30 Jupyter Notebook (Lisa) Jupyter notebook demo

	1:15pm Assessment (Bob Drost)

	Meet outside classroom after assessment for group photo

	2pm: Functional Annotation slides and Functional Annotation (Meg)

	6:00pm Dinner

	Evening: Ask the Expert (All)






	Friday 8/19
	
	9:15-9:45 Closing Lecture! (Meg and Matt)

	10am discussion about class; more stuff

	Links:
Opinionated guides to NGS [http://davis-assembly-masterclass-2013.readthedocs.org/en/latest/outputs/index.html] /
Software Carpentry [http://software-carpentry.org]
Data Carpentry [http://datacarpentry.org]










Dramatis personae

Instructors:


	Meg Staton @HardwoodGenomic [https://twitter.com/HardwoodGenomic?lang=en].

	Matt MacManes @macmanes [https://twitter.com/macmanes?lang=en].

	Torsten Seemann @torstenseemann [https://twitter.com/torstenseemann?lang=en].

	Shaun Jackman @sjackman [https://twitter.com/sjackman?lang=en].

	Rob Patro @nomad421 [https://twitter.com/nomad421?lang=en].

	Ian Dworkin @IanDworkin [https://twitter.com/IanDworkin?lang=en].

	Sonal Singhal

	Amanda Charbonneau @procrastinomics [https://twitter.com/procrastinomics?lang=en].



TAs:


	Lisa Cohen @monsterbashseq [https://twitter.com/monsterbashseq?lang=en].

	Will Pitchers @steeljawpanda [https://twitter.com/steeljawpanda?lang=en].

	Ming Chen



She Who Drives Many Places:


	Kate MacManes






Genome Assembly References


	Ben Langmead Resources [http://www.langmead-lab.org/teaching-materials/]

	How do we assemble genomes (videos) [https://www.youtube.com/watch?list=PLQ-85lQlPqFNGdaeGpV8dPEeSm3AChb6L&v=vjB6nhOu3BY]






Papers and References


Books


	Bioinformatics Data Skills [http://shop.oreilly.com/product/0636920030157.do]



	Practical Computing for Biologists [http://practicalcomputing.org/]

These books, especially the 1st, are highly recommended book for people looking for a systematic
presentation on shell scripting, programming, UNIX, etc.








RNAseq


	Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks [http://www.ncbi.nlm.nih.gov/pubmed/22383036], Trapnell et al.,
Nat. Protocols.

One paper that outlines a pipeline with the tophat, cufflinks, cuffdiffs and
some associated R scripts.



	Statistical design and analysis of RNA sequencing
data. [http://www.ncbi.nlm.nih.gov/pubmed/20439781], Auer and
Doerge, Genetics, 2010.



	A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. [http://www.ncbi.nlm.nih.gov/pubmed/?term=22965124] Nookaew et al., Nucleic Acids Res. 2012.



	Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments [http://www.ncbi.nlm.nih.gov/pubmed/?term=22998089] Vijay et al., 2012.



	Computational methods for transcriptome annotation and quantification using RNA-seq [http://www.ncbi.nlm.nih.gov/pubmed/21623353], Garber et al., Nat. Methods, 2011.



	Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. [http://www.ncbi.nlm.nih.gov/pubmed/?term=20167110], Bullard et al., 2010.



	A comparison of methods for differential expression analysis of RNA-seq data [http://www.biomedcentral.com/1471-2105/14/91], Soneson and Delorenzi, BMC Bioinformatics, 2013.



	Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. [http://www.ncbi.nlm.nih.gov/pubmed/?term=22872506], Wagner et al., Theory Biosci, 2012.  Also see this blog post [http://blog.nextgenetics.net/?e=51] explaining the paper in detail.








Computing and Data


	A Quick Guide to Organizing Computational Biology Projects [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000424], Noble, PLoS Comp Biology, 2009.

	Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of Statistical Results [http://software-carpentry.org/blog/2012/05/the-most-important-scientific-result-published-in-the-last-year.html], Wicherts et al., PLoS One, 2011.

	Got replicability? [http://econjwatch.org/articles/got-replicability-the-journal-of-money-credit-and-banking-archive], McCullough, Economics in Practice, 2007.



Also see this great pair of blog posts on organizing projects [http://nicercode.github.io/blog/2013-04-05-projects/] and research workflow [http://carlboettiger.info/2012/05/06/research-workflow.html].






Links


Humor


	Data Sharing and Management Snafu in 3 Short Acts [http://www.youtube.com/watch?v=N2zK3sAtr-4&feature=youtu.be]






Resources


	Biostar [http://biostars.org]

A high quality question & answer Web site.



	SEQanswers [http://seqanswers.com/]

A discussion and information site for next-generation sequencing.



	Software Carpentry lessons [http://software-carpentry.org/4_0/index.html]

A large number of open and reusable tutorials on the shell, programming,
version control, etc.








Blogs


	http://www.genomesunzipped.org/

Genomes Unzipped.



	http://ivory.idyll.org/blog/

Titus’s blog.



	http://bcbio.wordpress.com/

Blue Collar Bioinformatics



	http://massgenomics.org/

Mass Genomics



	http://blog.nextgenetics.net/

Next Genetics



	http://gettinggeneticsdone.blogspot.com/

Getting Genetics Done



	http://omicsomics.blogspot.com/

Omics! Omics!



	http://lab.loman.net/

Nick Loman’s lab notebook



	http://TheGenomeFactory.blogspot.com/

The Genome Factory (Torsten Seemann)










Material from previous years



	Day 1 - Getting started with Amazon
	Getting started with Amazon EC2
	Details!
	Start up an EC2 instance
	Log in

	Select your zone

	Select the machine operating system to boot

	Choose the machine size

	Change the size of the hard drive

	Confirm and launch

	(First time through) generate a new key pair

	(Next times through) select an existing key pair

	Click on View Instances

	Select the public DNS name for later use





	Logging into your new instance “in the cloud” (Windows version)
	Install mobaxterm

	Start a new session

	Fill in session settings

	Specify the session key

	Click OK





	Logging into your new instance “in the cloud” (Mac version)

	Terminating your instance

	Amazon Web Services reference material









	Running command-line BLAST
	Install software

	Get Data

	BLAST

	Summary









	Day 2 – Intro to Linux & Quality control




	Variant calling
	Booting an Amazon AMI

	Install software

	Download data

	Rename the reference

	Read mapping

	Visualizing alignments

	Statistics of alignments

	Calling SNPs

	Using IGV for Visualization

	Student Exercise





	Interval Analysis and Visualization
	Data collection





	Running bedtools

	Understanding the SAM format

	Control Flow and loops in R
	Control Flow
	The standard if else





	ifelse()

	Other vectorized ways of control flow.

	Simple loops
	while() function..





	for loop

	So for the for loop we would do the following:

	More avoiding loops

	The step above creates a vector of n NA’s. They will be replaced sequentially with the random numbers as we generate them (using a function like the above one).





	Variant calling and exploration of polymorphisms
	## Getting the data and installing extra packages

	Let’s do another round of variant calling

	Variant exploration with Bioconductor

	Quality control





	A complete de novo assembly and annotation protocol for mRNASeq
	Switching to root

	Updating the software on the machine

	Downloading the sample data

	Starting on the protocols

	Actually using the BLAST Web server





	Assembly with SOAPdenovo-Trans

	Mapping and Counting

	Analyzing RNA-seq counts with DESeq

	RNA-seq: mapping to a reference genome with tophat and counting with HT-seq

	RNA-seq: mapping to a reference genome with BWA and counting with HTSeq

	Booting an Amazon AMI

	Updating the operating system

	Install software

	Preparing the reference

	Mapping
	Optional - Script these steps





	Genome comparison and phylogeny
	Interactive visual genome comparison with Mauve

	Running a genome alignment

	Booting an Amazon AMI

	Logging in & updating the operating system

	Packages to install

	Getting the E. coli genome data

	What is the nearest reference genome?

	Ordering the assembly contigs against a nearby reference

	Making a phylogeny of many E. coli assemblies

	From tree file to figures





	Automation, scripts, git, and GitHub
	Automation and scripts

	Some git koans
	Forking a repository on github

	Create a new file on github and edit it, then pull

	Edit local file and push to github

	Create a new repository; add some files to it.









	MG-RAST and its API
	Example Usage

	Exercise - Download

	Working with Annotations

	A note on JSON

	Exercise - linking MG-RAST to taxonomy





	So you want to get some sequencing data out of NCBI?
	The challenge

	What is an API and how does it relate to NCBI?

	Automating with an API

	Exercise - Downloading data

	Comment on Genbank files

	Challenge:





	Looking at k-mer abundance distributions

	PacBio Tutorial

	RNASeq Transcript Mapping and Counting (BWA and HtSeq Flavor)
	Booting an Amazon AMI

	Updating the operating system

	Install software





	Evaluating the quality of your short reads, and trimming them
	Logging in

	Packages to install

	Getting some data

	Trimming and quality evaluation of your sequences





	Getting started with Amazon EC2
	Details!
	Start up an EC2 instance
	Log in

	Select your zone

	Select the machine operating system to boot

	Choose the machine size

	Change the size of the hard drive

	Confirm and launch

	(First time through) generate a new key pair

	(Next times through) select an existing key pair

	Click on View Instances

	Select the public DNS name for later use
	Next steps









	Logging into your new instance “in the cloud” (Windows version)
	Install mobaxterm

	Start a new session

	Fill in session settings

	Specify the session key

	Click OK





	Logging into your new instance “in the cloud” (Mac version)

	Terminating your instance

	Amazon Web Services reference material









	Instructor’s Guide to ANGUS Materials
	Licensing





	Workshop Code of Conduct
	Need Help?

	The Quick Version

	The Less Quick Version


















LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Day 1 - Getting started with Amazon
    
    

    







  
  


    
      
          
            
  
  
Day 1 - Getting started with Amazon

We’re going to start by getting you set up on Amazon Web Services.
For the duration of the course, we’ll be running analyses on computers
we rent from Amazon; this has a number of benefits that we’ll discuss
in the lecture.



	Getting started with Amazon EC2
	Details!





	Running command-line BLAST
	Install software

	Get Data

	BLAST

	Summary
















LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Getting started with Amazon EC2
    
    

    







  
  


    
      
          
            
  
  
Getting started with Amazon EC2

Summary:


	Go to http://aws.amazon.com/, log in, then “EC2” (upper left);

	Select “Launch instance”;

	Select “Ubuntu 14.04” from the list;

	Select “m3.xlarge” from the list (towards bottom of “General purpose”);

	Click “Review and launch”

	Select “Launch”;

	If your first time through, create a key pair; otherwise select existing;

	Click “launch instance”




Details!



	Start up an EC2 instance
	Log in

	Select your zone

	Select the machine operating system to boot

	Choose the machine size

	Change the size of the hard drive

	Confirm and launch

	(First time through) generate a new key pair

	(Next times through) select an existing key pair

	Click on View Instances

	Select the public DNS name for later use





	Logging into your new instance “in the cloud” (Windows version)
	Install mobaxterm

	Start a new session

	Fill in session settings

	Specify the session key

	Click OK





	Logging into your new instance “in the cloud” (Mac version)

	Terminating your instance





A final checklist:


	You have a green EC2 instance!

	You used ubuntu 14.04;

	You’re in US East (Virginia);

	You didn’t start a micro instance (m3.xlarge, or bigger);




Amazon Web Services reference material

Instance types [http://aws.amazon.com/ec2/instance-types/]

Instance costs [http://aws.amazon.com/ec2/pricing/]












LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Start up an EC2 instance
    
    

    







  
  


    
      
          
            
  
  
Start up an EC2 instance


Log in

Go to ‘https://aws.amazon.com‘ in a Web browser.

Select ‘My Account/Console’ menu option ‘AWS Management Console.”

Log in with your username & password.

Click on EC2 (upper left).

[image: ../_images/ec2-1.png]



Select your zone

Many of the resources that we use are hosted by Amazon on the East coast.
Make sure that your dashboard has ‘N. Virginia’ on the upper right.

Then click on Launch Instance.

[image: ../_images/ec2-2.png]



Select the machine operating system to boot

Find the “Ubuntu Server 14.04” image in the first list to show up.

[image: ../_images/ec2-3.png]



Choose the machine size

Select ‘General purpose’, ‘c4.2xlarge’, and then ‘Review and Launch’.

[image: ../_images/ec2-4.png]



Change the size of the hard drive

Make the size of the hard drive to be 100GB (or whatever is appropriate for the lesson).

[image: ../_images/NEW_EC.png]



Confirm and launch

Review the details (ignore the warnings!) and click on Launch.

[image: ../_images/ec2-5.png]



(First time through) generate a new key pair

If you don’t have any key pairs, enter a key pair name and
then download a key pair.  Then click Launch Instance.

[image: ../_images/ec2-6.png]



(Next times through) select an existing key pair

Select a key pair and click ‘Launch’.

[image: ../_images/ec2-7.png]



Click on View Instances

[image: ../_images/ec2-8.png]



Select the public DNS name for later use

[image: ../_images/ec2-9.png]

Next steps

Logging into your new instance “in the cloud” (Mac version) or Logging into your new instance “in the cloud” (Windows version)












LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Logging into your new instance “in the cloud” (Windows version)
    
    

    







  
  


    
      
          
            
  
  
Logging into your new instance “in the cloud” (Windows version)

OK, so you’ve created a running computer.  How do you get to it?

The main thing you’ll need is the network name of your new computer.
To retrieve this, go to the instance view and click on the instance,
and find the “Public DNS”.  This is the public name of your computer
on the Internet.

Copy this name, and connect to that computer with ssh under the username
‘ubuntu’, as follows.

—


Install mobaxterm

First, download mobaxterm [http://mobaxterm.mobatek.net/download.html] and
run it.




Start a new session

[image: ../_images/ec2-moba-1.png]



Fill in session settings

Put in your hostname (should be
ec2-XXX-YYY-ZZZ-AAA.compute-1.amazon.aws.com), select
‘specify username’, and enter ‘ubuntu’.

[image: ../_images/ec2-moba-2.png]



Specify the session key

Copy the downloaded .pem file onto your primary hard disk (generally
C:) and the put in the full path to it.

[image: ../_images/ec2-moba-3.png]



Click OK

Victory! (?)

[image: ../_images/ec2-moba-4.png]


Return to index: Getting started with Amazon EC2










LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Logging into your new instance “in the cloud” (Mac version)
    
    

    







  
  


    
      
          
            
  
  
Logging into your new instance “in the cloud” (Mac version)

OK, so you’ve created a running computer.  How do you get to it?

The main thing you’ll need is the network name of your new computer.
To retrieve this, go to the instance view and click on the instance,
and find the “Public DNS”.  This is the public name of your computer
on the Internet.

Copy this name, and connect to that computer with ssh under the username
‘ubuntu’, as follows.

First, find your private key file; it’s the .pem file you downloaded
when starting up your EC2 instance.  It should be in your Downloads
folder.  Move it onto your desktop and rename it to ‘amazon.pem’.

Next, start Terminal (in Applications... Utilities...) and type:

chmod og-rwx ~/Desktop/amazon.pem





to set the permissions on the private key file to “closed to all evildoers”.

Then type:

ssh -i ~/Desktop/amazon.pem ubuntu@ec2-???-???-???-???.compute-1.amazonaws.com





Here, you’re logging in as user ‘ubuntu’ to the machine
‘ec2-174-129-122-189.compute-1.amazonaws.com’ using the authentication
key located in ‘amazon.pem’ on your Desktop.

Note, you have to replace the stuff after the ‘@’ sign with the name
of the host; see the red circle in:

[image: ../_images/ec2-dashboard-instance-name.png]


At the end you should see text and a prompt that look like this:

[image: ../_images/win-putty-41.png]


Return to index: Getting started with Amazon EC2








LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Terminating your instance
    
    

    







  
  


    
      
          
            
  
  
Terminating your instance

Be sure to terminate your instance(s) after transferring off any data
that you want to keep!

To terminate your instance, select the instance you want to terminate,
and then go to the ‘Actions’ menu and select ‘Instance actions’, ‘terminate’:

[image: ../_images/ec2-terminate.png]
Wait a minute or two to be sure that the instance state changes to
“terminated”:

[image: ../_images/ec2-terminate-2.png]







LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Running command-line BLAST
    
    

    







  
  


    
      
          
            
  
  
Running command-line BLAST

The goal of this tutorial is to run you through a demonstration of the
command line, which you may not have seen or used much before.

Start up an m1.xlarge Amazon EC2 instance.

All of the commands below can copy/pasted.


Install software

Copy and paste the following commands

sudo apt-get update && sudo apt-get -y install python ncbi-blast+





This updates the software list and installs the Python programming
language and NCBI BLAST+.




Get Data

Grab some data to play with. Grab some cow and human RefSeq proteins:

wget ftp://ftp.ncbi.nih.gov/refseq/B_taurus/mRNA_Prot/cow.1.protein.faa.gz
wget ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.1.protein.faa.gz





This is only the first part of the human and cow protein files -  there are 24 files total for human.

The database files are both gzipped, so lets unzip them

gunzip *gz
ls





Take a look at the head of each file:

head cow.1.protein.faa
head human.1.protein.faa





These are protein sequences in FASTA format.  FASTA format is something many of you have probably seen in one form or another – it’s pretty ubiquitous.  It’s just a text file, containing records; each record starts with a line beginning with a ‘>’, and then contains one or more lines of sequence text.

Note that the files are in fasta format, even though they end if ”.faa” instead of the usual ”.fasta”. This NCBI’s way of denoting that this is a fasta file with amino acids instead of nucleotides.

How many sequences are in each one?

grep -c '^>' cow.1.protein.faa
grep -c '^>' human.1.protein.faa





This grep command uses the c flag, which reports a count of lines with match to the pattern. In this case, the pattern is a regular expression, meaning match only lines that begin with a >.

This is a bit too big, lets take a smaller set for practice. Lets take the first two sequences of the cow proteins, which we can see are on the first 6 lines

head -6 cow.1.protein.faa > cow.small.faa








BLAST

Now we can blast these two cow sequences against the set of human sequences. First, we need to tell blast about our database. BLAST needs to do some pre-work on the database file prior to searching. This helps to make the software work a lot faster. Because you installed your own version of the sotware, you need to tell the shell where the software is located. Use the full path and the makeblastdb  command:

makeblastdb -in human.1.protein.faa -dbtype prot
ls





Note that this makes a lot of extra files, with the same name as the database plus new extensions (.pin, .psq, etc). To make blast work, these files, called index files, must be in the same directory as the fasta file.

Now we can run the blast job. We will use blastp, which is appropriate for protein to protein comparisons.

blastp -query cow.small.faa -db human.1.protein.faa





This gives us a lot of information on the terminal screen. But this is difficult to save and use later - Blast also gives the option of saving the text to a file.

    blastp -query cow.small.faa -db human.1.protein.faa -out cow_vs_human_blast_results.txt
ls





Take a look at the results using less. Note that there can be more than one match between the query and the same subject. These are referred to as high-scoring segment pairs (HSPs).

less cow_vs_human_blast_results.txt





So how do you know about all the options, such as the flag to create an output file? Lets also take a look at the help pages. Unfortunately there are no man pages (those are usually reserved for shell commands, but some software authors will provide them as well), but there is a text help output

blastp -help





To scroll through slowly

blastp -help | less





To quit the less screen, press the q key.

Parameters of interest include the -evalue (Default is 10?!?) and the -outfmt

Lets filter for more statistically significant matches with a different output format:

blastp \
-query cow.small.faa \
-db human.1.protein.faa \
-out cow_vs_human_blast_results.tab \
-evalue 1e-5 \
-outfmt 7





I broke the long single command into many lines with by “escaping” the newline. That forward slash tells the command line “Wait, I’m not done yet!”. So it waits for the next line of the command before executing.

Check out the results with less.

Lets try a medium sized data set next

head -199 cow.1.protein.faa > cow.medium.faa





What size is this db?

grep -c '^>' cow.medium.faa





Lets run the blast again, but this time lets return only the best hit for each query.

blastp \
-query cow.medium.faa \
-db human.1.protein.faa \
-out cow_vs_human_blast_results.tab \
-evalue 1e-5 \
-outfmt 6 \
-max_target_seqs 1








Summary

Review:


	command line programs such as blast use flags to get information about how and what to do

	blast options can be found by typing blastp -help

	break a command up over many lines by using `` to “escape” the new line



Reminder: shut down your instance!










LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Day 2 – Intro to Linux & Quality control
    
    

    







  
  


    
      
          
            
  
  
Day 2 – Intro to Linux & Quality control

Before following the procedures below, go through the process of
starting up an ec2 instance and logging in – see Day 1 - Getting started with Amazon for
details.

The lecture will start at 9:15, the first tutorial
(Running command-line BLAST) will start at 10:30, and the
second tutorial will start at 1:30.











LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Variant calling
    
    

    







  
  


    
      
          
            
  
  
Variant calling

The goal of this tutorial is to show you the basics of variant calling
using Samtools [http://www.htslib.org/].

We’re going to be looking at variation in laboratory grown strains of Escherichia coli. We have reads from B strain REL606 and we’ll be mapping it to a reference genome from BL21(DE3). This is a different lab strain, and there’s an interesting paper where they trace the origin and transfer of all the different E. coli strains between scientisits through the decades.

Citation: Tracing Ancestors and Relatives of Escherichia coli B, and the Derivation of B Strains REL606 and BL21(DE3) [http://www.sciencedirect.com/science/article/pii/S0022283609011395]
Journal of Molecular Biology, Volume 394, Issue 4, 11 December 2009, Pages 634–643

[image: _images/ecoli.jpg]

Booting an Amazon AMI

Start up an Amazon computer (large or xlarge)
with an storage of 100Gb.




Install software

Log into your instance. Install ruby and git, then install linuxbrew.

sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install ruby git
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Linuxbrew/install/master/install)"
export PATH="/home/ubuntu/.linuxbrew/bin:$PATH"
export MANPATH="/home/ubuntu/.linuxbrew/share/man:$MANPATH"
export INFOPATH="/home/ubuntu/.linuxbrew/share/info:$INFOPATH"
brew tap homebrew/science





Now we can install anything available from linuxbrew science

brew install samtools
brew install zlib
brew install bcftools
brew install bwa





See what is installed:

brew list








Download data

Links to learn more about the data:


	Reference Genome [http://www.ncbi.nlm.nih.gov/nuccore/NC_012971]

	Reads [http://www.ebi.ac.uk/ena/data/view/SRR098042]



Download the reference genome and the resequencing reads

curl "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=NC_012971&rettype=fasta&retmode=text" > Ecoli_BL21.fasta
curl -O ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR098/SRR098038/SRR098038.fastq.gz





Note, this last URL is the “Fastq files (FTP)” link from the EBI page. Its compressed, lets decompress

gunzip SRR098038.fastq.gz





Just in case EBI is down , you can also get reads this way

curl -O ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA026/SRA026813/SRX040675/SRR098038.fastq.bz2








Rename the reference

The reference is named something really long and complicated. Check it out

head Ecoli_BL21.fasta





Lets shorten that for fewer headaches. Use nano to make the header look like this:

>NC_012971.2








Read mapping

Create the BWA index

bwa index Ecoli_BL21.fasta





Now, do the mapping of the raw reads to the reference genome

bwa aln Ecoli_BL21.fasta SRR098038.fastq > SRR098038.sai





Make a SAM file (this would be done with ‘sampe’ if these were paired-end reads)

bwa samse Ecoli_BL21.fasta SRR098038.sai SRR098038.fastq > SRR098038.sam





A sam file contains all of the information about where each read hits on the reference.  Links for more info:


	SAM the file format [https://samtools.github.io/hts-specs/SAMv1.pdf]

	Samtools the software [http://www.htslib.org/doc/samtools-1.3.html]



Next, index the reference genome with samtools

samtools faidx Ecoli_BL21.fasta





Convert the SAM into a BAM file

samtools view -bS SRR098038.sam > SRR098038.bam





Sort the BAM file

samtools sort SRR098038.bam > SRR098038.sorted.bam





And index the sorted BAM file

samtools index SRR098038.sorted.bam








Visualizing alignments

At this point you can visualize with samtools tview. Other visualization software:
* Tablet [http://bioinf.scri.ac.uk/tablet/].
* IGV [http://software.broadinstitute.org/software/igv/]

‘samtools tview’ is a text interface that you use from the command line; run it like so

samtools tview SRR098038.sorted.bam Ecoli_BL21.fasta





The ‘.’s are places where the reads align perfectly in the forward direction,
and the ‘,’s are places where the reads align perfectly in the reverse
direction.  Mismatches are indicated as A, T, C, G, etc.

You can scroll around using left and right arrows; to go to a specific
coordinate, use ‘g’ and then type in the contig name and the position.
For example, type ‘g’ and then ‘NC_012971.2:553093<ENTER>’ to go to position 553093 in the BAM file. (This name is taken from the fasta reference file, you could change to something more reasonable).

Use ‘q’ to quit.




Statistics of alignments

This command

samtools view -c -f 4 SRR098038.bam





will count how many reads DID NOT align to the reference (214518).

This command

samtools view -c -F 4 SRR098038.bam





will count how many reads DID align to the reference (6832113).

And this command

wc -l SRR098038.fastq





will tell you how many lines there are in the FASTQ file (28186524).
Reminder: there are four lines for each sequence.

There is another package, Picard Tools, that can give you more in depth information. Lets install with linuxbrew

brew install picard-tools





And use the particular tool CollectAlignmentSummaryMetrics

picard CollectAlignmentSummaryMetrics R=Ecoli_BL21.fasta I=SRR098038.sorted.bam O=statistics.txt





More picard tools stuff here [https://broadinstitute.github.io/picard/]

You can see the output with cat

cat statistics.txt





The definitions of all the columns in this file. [http://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics]




Calling SNPs

You can use samtools and bcftools to call SNPs. They have great documentation of a standard workflow for calling SNPs [http://www.htslib.org/workflow/#mapping_to_variant], you should read more about it. We’re going to do a simplified and updated version here.

Start with mpileup and pipe the results to bcftools

samtools mpileup -uf Ecoli_BL21.fasta SRR098038.sorted.bam | bcftools call -vmO v -o SRR098038.vcf --ploidy 1 --threads 2





You can check out the VCF file by using ‘tail’ to look at the bottom

tail SRR098038.vcf





Each variant call line consists of the chromosome name (for E. coli
REL606, there’s only one chromosome); the position within the
reference; an ID (here always ‘.’); the reference call; the variant
call; and a bunch of additional information about the variant.

The information at the end can be very useful but difficult to interpret. One way to quickly look up the label shorthand is to grep

 grep '<ID=VDB' SRR098038.vcf
     grep '<ID=AC' SRR098038.vcf



samtools tview SRR098038.sorted.bam Ecoli_BL21.fasta





You can use ‘samtools tview’ again and then type (for example) ‘g’
‘rel606:4616538’ to go visit one of the positions.  The format for the
address to go to with ‘g’ is ‘chr:position’.

NC_012971.2:4558366





You can read more about the VCF file format here [https://vcftools.github.io/specs.html].




Using IGV for Visualization

Installing IGV requires registration and some patience. IGV Link [http://software.broadinstitute.org/software/igv/].

To open your alignments, you’ll need
three files on your local computer: Ecoli_BL21.fasta, SRR098038.sorted.bam,
and SRR098038.sorted.bam.bai.  You can copy them over using scp (secure copy),
for example. You will do this from a terminal on your computer that is NOT connected to amazon.

scp -i ~/Downloads/???.pem ubuntu@???:/home/ubuntu/Ecoli_BL21.fasta ~/Downloads
scp -i ~/Downloads/???.pem ubuntu@???:/home/ubuntu/SRR098038.sorted.bam ~/Downloads
scp -i ~/Downloads/???.pem ubuntu@???:/home/ubuntu/SRR098038.sorted.bam.bai ~/Downloads





To add the gene annotation, get this file as well

curl ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/Escherichia_coli_BL21_DE3__uid161947/NC_012971.gff








Student Exercise

You are eager to use some E. coli reads from a collaborator, which you can download here

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR201/004/SRR2014554/SRR2014554_1.fastq.gz
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR201/004/SRR2014554/SRR2014554_2.fastq.gz





You need to quality trim them, map them to the E. coli reference, and call SNPs. How far can you get?










LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Interval Analysis and Visualization
    
    

    







  
  


    
      
          
            
  
  
Interval Analysis and Visualization

The results generate below are based on a question posed by a participant in the course.
She wanted to know how well contigs of an unfinished genomic build of and ecoli strain
match the common (K-12 strain MG1655) genomic build.

Download the results from:

http://apollo.huck.psu.edu/data/ms115.zip

How did we get the results in the file above? A short description follows:


Data collection

The partial genomic build is located at:

http://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=161608

From this we downloaded the summary file code/ADTL01.txt
that happens to be a tab delimited file that lists accession numbers.
We then wrote a very simple program code/getdata.py to parse
the list of accessions and download the data like so

# requires BioPython
from Bio import Entrez
Entrez.email = "A.N.Other@example.com"
stream = file("ADTL01.txt")
stream.next()

for line in stream:
    elems = line.strip().split()
    val = elems[1]
    handle = Entrez.efetch(db="nucleotide", id=val, rettype="fasta", retmode="text")
    fp = file("data/%s.fa" % val, 'wt')
    fp.write(handle.read())
    fp.close()





Finally we merged all data with:

cat *.fa > MS115.fa





Then we went hunting for the EColi genome, we found it here:

http://www.genome.wisc.edu/sequencing/updating.htm

Turns out that this site only distributes a GBK (Genbank file).
We now need to extract the information from the
GBK file to FASTA (genome) and GFF (genomic feature) file. For this we need to
install the ReadSeq program:

http://iubio.bio.indiana.edu/soft/molbio/readseq/java/

Once we have this we typed:

# GBK to GFF format
java -jar readseq.jar -inform=2 -f 24 U00096.gbk

# GBK to FASTA
java -jar readseq.jar -inform=2 -f 24 U00096.gbk





This will create the files U00096.gbk.fasta and U00096.gbk.gff

Now lets map the ms115.fa contigs to the U00096.fa reference:

bwa index U00096.fa
bwa mem U00096.fa ms115.fa | samtools view -bS - | samtools sort - U00096





will produce the U00096.bam file. We have converted the U00096.bam to BED format
via the:

bedtools bamtobed -i  U00096.bam  > U00096.bed





Visualizing the data

Download and run IGV

http://www.broadinstitute.org/igv/

Create a custom genome via Genomes -> Create .genome options

We will now  visualize the BAM, GFF and BED files and discuss the various aspects of it.






Running bedtools

Install bedtools:

sudo apt-get bedtools





This works best if you store your files in Dropbox, that way you can
edit the file on your computer then load them up on your IGV instance.








LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Understanding the SAM format
    
    

    







  
  


    
      
          
            
  
  
Understanding the SAM format

Log into your instance, create a new directory, navigate to that directory:

cd /mnt
    mkdir sam
    cd sam

    # Get the makefile.
    wget https://raw.githubusercontent.com/ngs-docs/angus/2014/files/Makefile-samtools -O Makefile





A series of exercises will show what the SAM format is and how it changes when
the query sequence is altered and how that reflects in the output.

Also, for the speed of result generation here is a one liner to generate a bamfile:

# One line bamfile generation.
bwa mem index/sc.fa query.fa | samtools view -bS - | samtools sort - results





This will produce the results.bam output.








LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Control Flow and loops in R
    
    

    







  
  


    
      
          
            
  
  
Control Flow and loops in R


Control Flow


The standard if else

p.test <- function(p) {
    if (p <= 0.05)
        print("yeah!!!!") else if (p >= 0.9)
        print("high!!!!") else print("somewhere in the middle")
}





Now pick a number and put it in p.test

p.test(0.5)





## [1] "somewhere in the middle"










ifelse()

A better and vectorized way of doing this is ifelse(test, yes, no)
function. ifelse() is far more useful as it is vectorized.

p.test.2 <- function(p) {
    ifelse(p <= 0.05, print("yippee"), print("bummer, man"))
}





Test this with the following sequence. See what happens if you use
if vs. ifelse().

x <- runif(10, 0, 1)
x





##  [1] 0.27332 0.14155 0.89000 0.07041 0.79419 0.25013 0.02324 0.86766
##  [9] 0.41114 0.56165





Now try it with p.test() (uses if).

p.test(x)





## Warning: the condition has length > 1 and only the first element will be used
## Warning: the condition has length > 1 and only the first element will be used





## [1] "somewhere in the middle"





Now try it with p.test.2()

p.test.2(x)





## [1] "yippee"
## [1] "bummer, man"





##  [1] "bummer, man" "bummer, man" "bummer, man" "bummer, man" "bummer, man"
##  [6] "bummer, man" "yippee"      "bummer, man" "bummer, man" "bummer, man"








Other vectorized ways of control flow.

There are many times that you may think you need to use an if with
(iterating with a for loop... see below), or ifelse, but there may be
far better ways.

For instance, say you are doing some simulations for a power analysis,
and you want to know how often your simulation gives you a p-value less
than 0.05.

p.1000 <- runif(n = 1000, min = 0, max = 1)





The line above generates 1000 random values between 0-1, which we will
pretend are our p-values for differential expression from our
simulation.

You may try and count how often it less than 0.05

p.ifelse <- ifelse(p.1000 < 0.05, 1, 0)  # If it is less than 0.05, then you get a 1, otherwise 0.





Our approximate false positives. Should be close to 0.05

sum(p.ifelse)/length(p.1000)





## [1] 0.059





However the best and fastest way to accomplish this is to use the index,
by setting up the Boolean (TRUE/FALSE) in the index of the vector.

length(p.1000[p.1000 < 0.05])/length(p.1000)





## [1] 0.059





Same number, faster and simpler computation.




Simple loops


while() function..

I tend to avoid these, so you will not see them much here

i <- 1
while (i <= 10) {
    print(i)
    i <- i + 0.5
}





## [1] 1
## [1] 1.5
## [1] 2
## [1] 2.5
## [1] 3
## [1] 3.5
## [1] 4
## [1] 4.5
## [1] 5
## [1] 5.5
## [1] 6
## [1] 6.5
## [1] 7
## [1] 7.5
## [1] 8
## [1] 8.5
## [1] 9
## [1] 9.5
## [1] 10










for loop

If I run a loop I most often use for(){} automatically iterates
across a list (in this case the sequence from 1:10).

for (i in 1:10) {
    print(i)
}





## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10





If you do not want to use integers, how might you do it using the for()?

for (i in seq(from = 1, to = 5, by = 0.5)) {
    print(i)
}





## [1] 1
## [1] 1.5
## [1] 2
## [1] 2.5
## [1] 3
## [1] 3.5
## [1] 4
## [1] 4.5
## [1] 5





Using strings is a bit more involved in R, compared to other languages.
For instance the following does not do what you want:

.. code:: r







	for (letter in “word”) {

	print(letter)



}




## [1] "word"





(try letters for a hoot.)

Instead in R, we have to split the word “word” into single characters
using strsplit(), i.e:

.. code:: r






strsplit(“word”, split = “”)


## [[1]]
## [1] "w" "o" "r" "d"








So for the for loop we would do the following:

for (letter in strsplit("word", split = "")) {
    print(letter)
}





## [1] "w" "o" "r" "d"








More avoiding loops

Many would generate random numbers like so.

for (i in 1:100) {
    print(rnorm(n = 1, mean = 0, sd = 1))
}





## [1] -0.1837
## [1] -0.9313
## [1] 1.648
## [1] -0.6964
## [1] 0.2112
## [1] 0.3441
## [1] 1.036
## [1] 0.7439
## [1] 0.5859
## [1] -0.6087
## [1] -0.4014
## [1] 1.44
## [1] -0.3906
## [1] -1.861
## [1] -0.739
## [1] -1.204
## [1] 0.07794
## [1] -1.65
## [1] 1.261
## [1] 0.6753
## [1] 0.6736
## [1] 0.3238
## [1] -1.316
## [1] 0.2965
## [1] 1.499
## [1] 0.4326
## [1] 0.4488
## [1] 0.8873
## [1] -1.304
## [1] -0.347
## [1] 0.3491
## [1] 0.24
## [1] 0.1425
## [1] -0.2785
## [1] -0.5072
## [1] -1.775
## [1] -0.04051
## [1] 0.9452
## [1] 0.3322
## [1] -0.01994
## [1] -0.2308
## [1] -0.4053
## [1] -0.5685
## [1] -1.631
## [1] -0.1484
## [1] 0.434
## [1] 1.653
## [1] 1.57
## [1] 0.1308
## [1] -1.059
## [1] -0.7157
## [1] -0.8316
## [1] 0.06561
## [1] 0.8243
## [1] 0.1841
## [1] 1.048
## [1] 0.1612
## [1] -0.9553
## [1] -0.7569
## [1] -0.288
## [1] -1.837
## [1] 0.7301
## [1] -2.103
## [1] -1.869
## [1] -1.298
## [1] -1.077
## [1] -0.2139
## [1] -0.9419
## [1] 0.4694
## [1] -1.344
## [1] -0.08514
## [1] -2.055
## [1] -0.803
## [1] -0.7281
## [1] 1.778
## [1] -1.116
## [1] 1.33
## [1] 0.1535
## [1] -2.897
## [1] 0.7305
## [1] 1.228
## [1] 1.697
## [1] -0.8183
## [1] -1.013
## [1] -0.634
## [1] -0.942
## [1] -0.3395
## [1] 0.1396
## [1] 1.022
## [1] 0.9868
## [1] -0.7778
## [1] 1.075
## [1] -0.1029
## [1] 0.2644
## [1] 0.01165
## [1] 0.8025
## [1] -1.24
## [1] -0.8865
## [1] 0.981
## [1] 0.5333





We are cycling through and generating one random number at each
iteration. Look at the indices, and you can see we keep generating
vectors of length 1.

better/cleaner/faster to generate them all at one time

rnorm(n = 100, mean = 0, sd = 1)





##   [1] -0.08683 -1.55262 -1.16909  0.30451 -1.14555  0.76682  0.12643
##   [8] -0.61174 -0.29103 -0.10707 -0.03397 -0.05926  0.27294  1.32693
##  [15] -0.53284  1.83234  0.43959 -0.88991  0.25383  0.96709 -0.23210
##  [22] -1.00190 -1.32289  1.80030  1.15272 -1.82907  0.75989  1.35966
##  [29]  0.53943  0.01429 -0.58707 -0.11886 -0.70367 -2.38988  0.08033
##  [36] -0.22795 -0.62166 -0.19832 -1.95990 -0.85127  0.94236  0.37771
##  [43]  0.32617 -0.08393 -0.54506 -2.58781 -0.58433  0.20985 -0.41613
##  [50]  0.60527  0.51713  1.57950 -0.61079 -0.28564 -0.16444  0.55007
##  [57]  0.57258  0.58513 -0.86728 -0.81185 -0.29333 -1.23935  0.46169
##  [64] -1.53586 -0.32583  0.17629 -0.85579  1.04989  1.22120  1.53359
##  [71] -2.37276  1.44393  1.47506  0.40110 -0.10157  0.35485 -0.72068
##  [78] -1.27910  0.63152 -0.65216  1.60160  0.27109  0.50904 -1.00531
##  [85]  0.76743 -0.78954 -0.01159  1.06944  1.15661 -0.91031  1.54919
##  [92] -0.84334  2.19994  0.26716  0.02081  0.53577  0.07840 -0.79387
##  [99] -1.18941  1.24745





The not advisable approach

First we initialize a vector to store all of the numbers. Why do we
initialize this vector first?

n <- 1e+05
x <- rep(NA, n)








The step above creates a vector of n NA’s. They will be replaced sequentially with the random numbers as we generate them (using a function like the above one).

head(x)





## [1] NA NA NA NA NA NA





Now we run the for loop.

for (i in 1:n) {
    x[i] <- rnorm(n = 1, mean = 0, sd = 1)
}





for each i in the index, one number is generated, and placed in x

head(x)





## [1]  0.2848 -0.5432  1.1391 -1.0901  0.8515  0.5490





However this is computationally inefficient in R. Which has vectorized
operations.

system.time(

for (i in 1:n){
    x[i] <- rnorm(n=1, mean=0, sd=1)})





##    user  system elapsed
##   0.562   0.023   0.584





We can also use the replicate function to do the same thing. Easier
syntax to write.

system.time(z <- replicate(n, rnorm(n = 1, mean = 0, sd = 1)))





##    user  system elapsed
##   0.561   0.035   0.841





This is ~20% faster.

However, since R is vectorized, both of the will be far slower than:

system.time(y <- rnorm(n, 0, 1))





##    user  system elapsed
##   0.010   0.000   0.011





About 65 times faster than the for loop

The general rule in R is that loops are slower than the apply family of
functions (for small to medium data sets, not true for very large data)
which are slower than vectorized computations.










LICENSE:
This documentation and all textual/graphic site content is licensed
under the 
Creative Commons - 0 License
(CC0) -- fork @
github.  Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.




  





Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus



          
  
    
    
    Variant calli