

 Navigation

 	
 index

 	
 next |

 	angus 5.0 documentation

Next-Gen Sequence Analysis Workshop (2014)

This is the schedule for the 2014 MSU NGS course [http://bioinformatics.msu.edu/ngs-summer-course-2014].

This workshop has a Workshop Code of Conduct.

Assessment questionnaire [https://docs.google.com/forms/d/1ltExAGPIWSNRPqLk4XCIOXEv-Kp3Lr8fstvLEghmPrY/viewform]

	Day
	Schedule

	Monday 8/4
	
	1:30pm lecture: Welcome! (Titus)

	Tutorial: Day 1 - Getting started with Amazon

	7pm: research presentations

	Tuesday 8/5
	
	Day 2 – Running BLAST and other things at the command line

	9:15am lecture: Sequencing considerations (Titus)

	10:30am: tutorial, Running command-line BLAST (Titus)

	Afternoon: assessment

	1:15pm: tutorial, Short Read Quality Control (Elijah and Istvan)

	Evening: firepit social

	Wednesday 8/6
	
	9:15am lecture: Mapping and Assembly (Titus)

	10:30am: tutorial, Variant calling (Titus)

	1:15pm: Understanding the SAM format (Istvan)

	7:15pm: tutorial, UNIX command line (Elijah)

	Thursday 8/7
	
	9:15am lecture: Genomic Intervals (Istvan)

	10:30am mini-diversion: The Bioinformatics Skill System (Istvan)

	10:45am: tutorial, Interval Analysis and Visualization (Istvan)

	1:15pm: tutorial, Assembling E. coli sequences with Velvet (Titus)

	5:30pm: leave for Kalamazoo

	Friday 8/8
	
	9:15am-noon lecture/tutorial, R Tutorial for NGS2014 R etc. (Ian Dworkin and Martin Schilling)

	1:15pm: tutorial, Variant calling and exploration of polymorphisms

	1:15pm: lecture, more variant calling (Martin Schilling)

	7pm: lecture, Gene and genome annotation: PowerPoint | PDF (Daniel Standage)

	Saturday 8/9
	
	9:15am-noon: lecture/tutorial, A complete de novo assembly and annotation protocol for mRNASeq (Titus)

	1:15pm: lecture/discussion, mRNAseq assembly with Trinity (Meg Staton)

	Monday 8/11
	
	9:15am lecture, mRNAseq and counting PDF (Ian Dworkin)

	10:30am tutorial, RNA-seq: mapping to a reference genome with tophat and counting with HT-seq (Chris Chandler)

	10:45am tutorial, RNASeq Transcript Mapping and Counting (BWA and HtSeq Flavor) (Meg)

	2:15pm tutorial, Assembly with SOAPdenovo-Trans (Matt)

	7:15pm tutorial, Mapping reads to transcriptomes (Trinity and SOAP) and counting.

	Tuesday 8/12
	
	9:15am lecture, mRNAseq and counting lecture 2 PDF (Ian Dworkin)

	11:00am tutorial, R script for DEA on github <drosophila_htseq.R>

	1:15pm tutorial, RNA-seq: mapping to a reference genome with BWA and counting with HTSeq (Meg)

	2:00pm lecture, A tableside discussion on transcriptome assembly PDF (Matt).

	Wednesday 8/13
	
	9:15am lecture/tutorial, So you want to get some sequencing data in NCBI? (Adina)

	11:00am tutorial, MG-RAST and its API (Adina)

Dramatis personae

Instructors:

	Istvan Albert

	C Titus Brown

	Ian Dworkin

TAs:

	Amanda Charbonneau

	Elijah Lowe

	Will Pitchers

	Aswathy Sebastian

	Qingpeng Zhang

Lecturers:

	Chris Chandler

	Adina Chuang Howe

	Matt MacManes

	Martin Schilling

	Daniel Standage

	Meg Staton

He Who Drives Many Places:

	Cody Nicks

Papers and References

Books

	Practical Computing for Biologists [http://practicalcomputing.org/]

This is a highly recommended book for people looking for a systematic
presentation on shell scripting, programming, UNIX, etc.

RNAseq

	Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks [http://www.ncbi.nlm.nih.gov/pubmed/22383036], Trapnell et al.,
Nat. Protocols.

One paper that outlines a pipeline with the tophat, cufflinks, cuffdiffs and
some associated R scripts.

	Statistical design and analysis of RNA sequencing
data. [http://www.ncbi.nlm.nih.gov/pubmed/20439781], Auer and
Doerge, Genetics, 2010.

	A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. [http://www.ncbi.nlm.nih.gov/pubmed/?term=22965124] Nookaew et al., Nucleic Acids Res. 2012.

	Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments [http://www.ncbi.nlm.nih.gov/pubmed/?term=22998089] Vijay et al., 2012.

	Computational methods for transcriptome annotation and quantification using RNA-seq [http://www.ncbi.nlm.nih.gov/pubmed/21623353], Garber et al., Nat. Methods, 2011.

	Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. [http://www.ncbi.nlm.nih.gov/pubmed/?term=20167110], Bullard et al., 2010.

	A comparison of methods for differential expression analysis of RNA-seq data [http://www.biomedcentral.com/1471-2105/14/91], Soneson and Delorenzi, BMC Bioinformatics, 2013.

	Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. [http://www.ncbi.nlm.nih.gov/pubmed/?term=22872506], Wagner et al., Theory Biosci, 2012. Also see this blog post [http://blog.nextgenetics.net/?e=51] explaining the paper in detail.

Computing and Data

	A Quick Guide to Organizing Computational Biology Projects [http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000424], Noble, PLoS Comp Biology, 2009.

	Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of Statistical Results [http://software-carpentry.org/blog/2012/05/the-most-important-scientific-result-published-in-the-last-year.html], Wicherts et al., PLoS One, 2011.

	Got replicability? [http://econjwatch.org/articles/got-replicability-the-journal-of-money-credit-and-banking-archive], McCullough, Economics in Practice, 2007.

Also see this great pair of blog posts on organizing projects [http://nicercode.github.io/blog/2013-04-05-projects/] and research workflow [http://carlboettiger.info/2012/05/06/research-workflow.html].

Links

Humor

	Data Sharing and Management Snafu in 3 Short Acts [http://www.youtube.com/watch?v=N2zK3sAtr-4&feature=youtu.be]

Resources

	Biostar [http://biostars.org]

A high quality question & answer Web site.

	SEQanswers [http://seqanswers.com/]

A discussion and information site for next-generation sequencing.

	Software Carpentry lessons [http://software-carpentry.org/4_0/index.html]

A large number of open and reusable tutorials on the shell, programming,
version control, etc.

Blogs

	http://www.genomesunzipped.org/

Genomes Unzipped.

	http://ivory.idyll.org/blog/

Titus’s blog.

	http://bcbio.wordpress.com/

Blue Collar Bioinformatics

	http://massgenomics.org/

Mass Genomics

	http://blog.nextgenetics.net/

Next Genetics

	http://gettinggeneticsdone.blogspot.com/

Getting Genetics Done

	http://omicsomics.blogspot.com/

Omics! Omics!

Complete table of contents

	Day 1 - Getting started with Amazon
	Start up an EC2 instance

	Logging into your new instance “in the cloud” (Windows version)
	Generate a ppk file from your pem file

	Logging into your EC2 instance with Putty

	Logging into your new instance “in the cloud” (Mac version)

	Installing Dropbox on your EC2 machine

	Terminating (shutting down) your EC2 instance

	Day 2 – Running BLAST and other things at the command line
	Running command-line BLAST
	Switching to root

	Updating the software on the machine

	Install BLAST

	Running BLAST

	Converting BLAST output into CSV

	Summing up

	Short Read Quality Control
	Biostar QoD (questions of the day)
	Quick Start

	FastQC at the command line

	Setup

	Software Install

	Download Data

	The FASTQ Format

	Pattern Matching

	Trimming

	Variant calling
	Booting an Amazon AMI

	Updating the operating system

	Install software

	Download data

	Do the mapping

	Visualizing alignments

	Counting alignments

	Calling SNPs

	Questions/discussion items

	Assembling E. coli sequences with Velvet
	Booting an Amazon AMI
	Logging in

	Updating the operating system
	Packages to install

	Getting the data

	Running an assembly

	Comparing and evaluating assemblies - QUAST

	Searching assemblies – BLAST

	Questions and Discussion Points

	Followup work

	Interval Analysis and Visualization
	Data collection

	Running bedtools

	Understanding the SAM format

	R Tutorial for NGS2014
	What is R?

	Installing R
	R

	What is R, really....

	How to close R

	R Basics

	R as a calculator
	to raise something to e^some exponent

	A bit on data structures in R

	GETTING HELP in R

	Simple functions in base R

	Objects in R, classes of objects, mode of objects.

	Workspaces, and objects in them

	SCRIPT!

	Writing our own functions in R

	Using source() to load your functions

	Regular Sequences

	Indexing, extracting values and subsetting from the objects we have created

	Where to go from here?

	A few advanced topics... For your own amusement (not nescessary for now, but helps for more advanced R programming).

	Syntax style guide

	Random bits

	session info
	R indexing begins at 1 (not 0 like Python) Negative values of indexes in R

	mean something very different. for instance

	TOC

	Section 1: What is R; R at the console; quiting R

	Section 2: R basics; R as a calculator; assigning variables; vectorized computation in R

	Section 3: pre-built functions in R

	Section 4: Objects, classes, modes - Note: should I add attributes?

	Section 5: The R workspace; listing objects, removing objects (should I add attach and detach?)

	Section 6: Getting Help in R

	Section 7: Using A script editor for R

	Section 8: Writing simple functions in R

	Section 8b: Using source() to call a set of functions

	Section 9: Regular sequences in R

	Section 10: Extracting (and replacing), indexing & subsetting (using the index). Can also be used for sorting.
	Advanced stuff to learn on your own...

 setting attributes of objects.... (names, class, dim)

 environments (see ?environments)

	Control Flow
	The standard if else

	ifelse()

	Other vectorized ways of control flow.

	Simple loops
	while() function..

	for loop

	So for the for loop we would do the following:

	More avoiding loops

	The step above creates a vector of n NA’s. They will be replaced sequentially with the random numbers as we generate them (using a function like the above one).

	Variant calling and exploration of polymorphisms
	## Getting the data and installing extra packages

	Let’s do another round of variant calling

	Variant exploration with Bioconductor

	Quality control

	A complete de novo assembly and annotation protocol for mRNASeq
	Switching to root

	Updating the software on the machine

	Downloading the sample data

	Starting on the protocols

	Actually using the BLAST Web server

	Amazon Web Services instructions
	Start up an EC2 instance

	Logging into your new instance “in the cloud” (Mac version)

	Logging into your new instance “in the cloud” (Windows version)
	Generate a ppk file from your pem file

	Logging into your EC2 instance with Putty

	Installing Dropbox on your EC2 machine

	Terminating (shutting down) your EC2 instance

	Storing data persistently with Amazon EBS Volumes
	Prerequisites

	Creating an Amazon EBS Volume

	Detaching an Amazon EBS Volume

	Using Amazon EBS Snapshots for sharing and backing up data
	Prerequisites

	Creating an Amazon EBS Snapshot from a Volume

	Sharing an Amazon EBS Snapshot

	Restoring an Amazon EBS Volume from a Snapshot

	Transferring Files between your laptop and Amazon instance
	Using scp to transfer data

	Using FileZilla to transfer data

	Uploading files to Amazon S3 to share
	Uploading files to Amazon S3

	Downloading files from Amazon S3

	Starting up a custom operating system

	Technical guide to the ANGUS course
	Packages we install

	Instructor’s Guide to ANGUS Materials
	Licensing

	Workshop Code of Conduct
	Need Help?

	The Quick Version

	The Less Quick Version

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Day 1 - Getting started with Amazon

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Day 1 - Getting started with Amazon

We’re going to start by getting you set up on Amazon Web Services.
For the duration of the course, we’ll be running analyses on computers
we rent from Amazon; this has a number of benefits that we’ll discuss
in the lecture.

	Start up an EC2 instance

	Logging into your new instance “in the cloud” (Windows version)
	Generate a ppk file from your pem file

	Logging into your EC2 instance with Putty

	Logging into your new instance “in the cloud” (Mac version)

	Installing Dropbox on your EC2 machine

	Terminating (shutting down) your EC2 instance

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Start up an EC2 instance

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Amazon Web Services instructions

Start up an EC2 instance

Here, we’re going to startup an Amazon Web Services (AWS) Elastic
Cloud Computing (EC2) “instance”, or computer.

Go to ‘https://aws.amazon.com‘ in a Web browser.

Select ‘My Account/Console’ menu option ‘AWS Management Console.”

Log in with your username & password.

Make sure it says North Virginia in the upper right, then select EC2
(upper left).

[image: ../_images/amazon-1.png]
Select “Launch Instance” (midway down the page).

[image: ../_images/amazon-2.png]
Next, scroll down the list of operating system types until you find
Ubuntu 14.04 LTS (PV) – it should be at the very bottom. Click ‘select’.
(See Starting up a custom operating system if you want to start up a custom
operating system instead of Ubuntu 14.04.)

[image: ../_images/amazon-3.png]
Scroll down the list of instance types until you find “m1.xlarge”. Select
the box to the left, and then click “Review and Launch.”

[image: ../_images/amazon-4.png]
Ignore the warning, check that it says “Ubuntu 14.04 LTS (PV)”, and cick
“Launch”.

[image: ../_images/amazon-5.png]
The first time through, you will have to “create a new key pair”, which
you must then name (something like ‘amazon’) and download.

After this first time, you will be able to select an existing key pair.

[image: ../_images/amazon-6.png]
Select “Launch Instance.”

[image: ../_images/amazon-7.png]
Select “view instance” and you should see a “pending” line in the
menu.

[image: ../_images/amazon-8.png]
Wait until it turns green, then make a note of the “Public DNS” (we
suggest copying and pasting it into a text notepad somewhere). This
is your machine name, which you will need for logging in.

[image: ../_images/amazon-9.png]
Then, go to Logging into your new instance “in the cloud” (Windows version) or Logging into your new instance “in the cloud” (Mac version)

You might also want to read about Terminating (shutting down) your EC2 instance.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Logging into your new instance “in the cloud” (Windows version)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Amazon Web Services instructions

Logging into your new instance “in the cloud” (Windows version)

Download Putty and Puttygen from here: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Generate a ppk file from your pem file

(You only need to do this once!)

Open puttygen; select “Load”.

[image: ../_images/win-puttygen.png]
Find and load your ‘.pem’ file; it’s probably in your Downloads
folder. Note, you have to select ‘All files’ on the bottom.

[image: ../_images/win-puttygen-2.png]
Load it.

[image: ../_images/win-puttygen-3.png]
Now, “save private key”. Put it somewhere easy to find.

[image: ../_images/win-puttygen-4.png]

Logging into your EC2 instance with Putty

Open up putty, and enter your hostname into the Host Name box.

[image: ../_images/win-putty-1.png]
Now, go find the ‘SSH’ section and enter your ppk file (generated above
by puttygen). Then select ‘Open’.

[image: ../_images/win-putty-2.png]
Log in as “ubuntu”.

[image: ../_images/win-putty-3.png]
Declare victory!

[image: ../_images/win-putty-4.png]
Here, you’re logging in as user ‘ubuntu’ to the machine
‘ec2-174-129-122-189.compute-1.amazonaws.com’ using the authentication
key located in ‘amazon.pem’ on your Desktop.

You should now see a text line that starts with something like
ubuntu@ip-10-235-34-223:~$. You’re in! Now type:

sudo bash
cd /root

to switch into superuser mode (see: http://xkcd.com/149/) and go to your
home directory.

This is where the rest of the tutorials will start!

If you have Dropbox, you should now visit Installing Dropbox on your EC2 machine.

You might also want to read about Terminating (shutting down) your EC2 instance.

To log out, type:

exit
logout

or just close the window.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Logging into your new instance “in the cloud” (Mac version)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Amazon Web Services instructions

Logging into your new instance “in the cloud” (Mac version)

OK, so you’ve created a running computer. How do you get to it?

The main thing you’ll need is the network name of your new computer.
To retrieve this, go to the instance view and click on the instance,
and find the “Public DNS”. This is the public name of your computer
on the Internet.

Copy this name, and connect to that computer with ssh under the username
‘root’, as follows.

First, find your private key file; it’s the .pem file you downloaded
when starting up your EC2 instance. It should be in your Downloads
folder. Move it onto your desktop and rename it to ‘amazon.pem’.

Next, start Terminal (in Applications... Utilities...) and type:

chmod og-rwx ~/Desktop/amazon.pem

to set the permissions on the private key file to “closed to all evildoers”.

Then type:

ssh -i ~/Desktop/amazon.pem ubuntu@ec2-???-???-???-???.compute-1.amazonaws.com

(but you have to replace the stuff after the ‘@’ sign with the name of the host).

Here, you’re logging in as user ‘ubuntu’ to the machine
‘ec2-174-129-122-189.compute-1.amazonaws.com’ using the authentication
key located in ‘amazon.pem’ on your Desktop.

You should now see a text line that starts with something like
ubuntu@ip-10-235-34-223:~$. You’re in! Now type:

sudo bash
cd /root

to switch into superuser mode (see: http://xkcd.com/149/) and go to your
home directory.

This is where the rest of the tutorials will start!

If you have Dropbox, you should now visit Installing Dropbox on your EC2 machine.

You might also want to read about Terminating (shutting down) your EC2 instance.

To log out, type:

exit
logout

or just close the window.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Installing Dropbox on your EC2 machine

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Amazon Web Services instructions

Installing Dropbox on your EC2 machine

IMPORTANT: Dropbox will sync everything you have to your EC2 machine, so
if you are already using Dropbox for a lot of stuff, you might want to
create a separate Dropbox account just for the course.

Start at the login prompt on your EC2 machine:

cd /root

If you can not do this(“Permission denied”), make sure you are in
superuser mode. (You should see a text line that starts with something like

root@ip-10-235-34-223:~$. If not, use “sudo bash” to switch.)

Then, grab the latest dropbox installation package for Linux:

wget -O dropbox.tar.gz "http://www.dropbox.com/download/?plat=lnx.x86_64"

Unpack it:

tar -xvzf dropbox.tar.gz

Make the Dropbox directory on /mnt and link it in:

mkdir /mnt/Dropbox
ln -fs /mnt/Dropbox /root

and then run it, configuring it to put stuff in /mnt:

HOME=/mnt /root/.dropbox-dist/dropboxd &

When you get a message saying “this client is not linked to any account”,
copy/paste the URL into browser and go log in. Voila!

Your directory ‘/root/Dropbox’, or, equivalently, ‘/mnt/Dropbox’, is now
linked to your Dropbox account!

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Terminating (shutting down) your EC2 instance

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Amazon Web Services instructions

Terminating (shutting down) your EC2 instance

While your instance is running, Amazon will happily charge you on a per-hour
basis – check out the pricing [http://www.ec2instances.info/] for more
information. In general, you will want to shut down your instance when
you’re done with it; to do that, go to your EC2 console and find your
running instances (in green).

[image: ../_images/terminate-1.png]
Then, select one or all of them, and go to the ‘Actions...’ menu, and
then select ‘Terminate’. Agree.

After a minute or two, the console should show the instance as “terminated”.

[image: ../_images/terminate-2.png]

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Day 2 – Running BLAST and other things at the command line

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Day 2 – Running BLAST and other things at the command line

Before following the procedures below, go through the process of
starting up an ec2 instance and logging in – see Day 1 - Getting started with Amazon for
details. Make sure you follow the Dropbox instructions, too!

The lecture will start at 9:15, the first tutorial
(Running command-line BLAST) will start at 10:30, and the
second tutorial will start at 1:30.

	Running command-line BLAST
	Switching to root

	Updating the software on the machine

	Install BLAST

	Running BLAST

	Converting BLAST output into CSV

	Summing up

	Short Read Quality Control
	Biostar QoD (questions of the day)

	Setup

	Software Install

	Download Data

	The FASTQ Format

	Pattern Matching

	Trimming

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Running command-line BLAST

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Day 2 – Running BLAST and other things at the command line

Running command-line BLAST

The goal of this tutorial is to run you through a demonstration of the
command line, which you may not have seen or used much before.

Prepare for this tutorial by working through
Start up an EC2 instance, but follow the instructions
to start up Starting up a custom operating system instead; use
AMI ami-7606d01e.

All of the commands below can and should be copy/pasted rather than
re-typed.

Note: on Windows using TeraTerm, you can select the commands in
the Web browser, then go to TeraTerm and click your right mouse
button to paste. On Mac OS X using Terminal, you can select the
commands in the Web browser, use Command-C to copy, and then go
the terminal and use Command-V to paste.

Switching to root

Start by making sure you’re the superuser, root:

sudo bash

Updating the software on the machine

Copy and paste the following two commands

apt-get update
apt-get -y install screen git curl gcc make g++ python-dev unzip \
 default-jre pkg-config libncurses5-dev r-base-core \
 r-cran-gplots python-matplotlib sysstat

(make sure to hit enter after the paste – sometimes the last line doesn’t
paste completely.)

If you started up a custom operating system, then this should finish
quickly; if instead you started up Ubuntu 14.04 blank, then this will
take a minute or two.

Install BLAST

Here, we’re using curl to download the BLAST distribution from NCBI;
then we’re using ‘tar’ to unpack it into the current directory; and
then we’re copying the program files into the directory
/usr/local/bin, where we can run them from anywhere.

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.26/blast-2.2.26-x64-linux.tar.gz
tar xzf blast-2.2.26-x64-linux.tar.gz
cp blast-2.2.26/bin/* /usr/local/bin
cp -r blast-2.2.26/data /usr/local/blast-data

OK – now you can run BLAST from anywhere!

Again, this is basically what “installing software” means – it just
means copying around files so that they can be run, and (in some cases)
setting up resources so that the software knows where specific data
files are.

Running BLAST

Try typing:

blastall

You’ll get a long laundry list of output, with all sorts of options and
arguments. Let’s play with some of them.

First! We need some data. Let’s grab the mouse and zebrafish RefSeq
protein data sets from NCBI, and put them in /mnt, which is the
scratch disk space for Amazon machines

cd /mnt

curl -O ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot/mouse.protein.faa.gz
curl -O ftp://ftp.ncbi.nih.gov/refseq/D_rerio/mRNA_Prot/zebrafish.protein.faa.gz

If you look at the files in the current directory, you should see both
files, along with a directory called lost+found which is for system
information:

ls -l

should show you:

drwx------ 2 root root 16384 2013-01-08 00:14 lost+found
-rw-r--r-- 1 root root 9454271 2013-06-11 02:29 mouse.protein.faa.gz
-rw-r--r-- 1 root root 8958096 2013-06-11 02:29 zebrafish.protein.faa.gz

Both of these files are FASTA protein files (that’s what the .faa suggests)
that are compressed by gzip (that’s what the .gz suggests).

Uncompress them

gunzip *.faa.gz

and let’s look at the first few sequences:

head -11 mouse.protein.faa

These are protein sequences in FASTA format. FASTA format is something
many of you have probably seen in one form or another – it’s pretty
ubiquitous. It’s just a text file, containing records; each record
starts with a line beginning with a ‘>’, and then contains one or more
lines of sequence text.

Let’s take those first two sequences and save them to a file. We’ll
do this using output redirection with ‘>’, which says “take
all the output and put it into this file here.”

head -11 mouse.protein.faa > mm-first.fa

So now, for example, you can do ‘cat mm-first.fa’ to see the contents of
that file (or ‘less mm-first.fa’).

Now let’s BLAST these two sequences against the entire zebrafish
protein data set. First, we need to tell BLAST that the zebrafish
sequences are (a) a database, and (b) a protein database. That’s done
by calling ‘formatdb’

formatdb -i zebrafish.protein.faa -o T -p T

Next, we call BLAST to do the search

blastall -i mm-first.fa -d zebrafish.protein.faa -p blastp

This should run pretty quickly, but you’re going to get a LOT of output!!
What’s going on? A few things –

	if you BLAST a sequence against a large database, odds are it will turn
up a lot of spurious matches. By default, blastall uses an e-value cutoff
of 10, which is very relaxed.

	blastall also reports the first 100 matches, which is usually more than
you want.

	a lot of proteins also have trace similarity to other proteins!

For all of these reasons, generally you only want the first few BLAST
matches, and/or the ones with a “good” e-value. We do that by adding
‘-b 2 -v 2’ (which says, report only two matches and alignments); and
by adding ‘-e 1e-6’, which says, report only matches with an e-value
of 1e-6 or better

blastall -i mm-first.fa -d zebrafish.protein.faa -p blastp -b 2 -v 2 -e 1e-6

Now you should get a lot less text! (And indeed you do...) Let’s put it an
output file, ‘out.txt’

blastall -i mm-first.fa -d zebrafish.protein.faa -p blastp -b 2 -v 2 -o out.txt

The contents of the output file should look exactly like the output before
you saved it into the file – check it out:

cat out.txt

Converting BLAST output into CSV

Suppose we wanted to do something with all this BLAST output. Generally,
that’s the case - you want to retrieve all matches, or do a reciprocal
BLAST, or something.

As with most programs that run on UNIX, the text output is in some
specific format. If the program is popular enough, there will be one
or more parsers written for that format – these are just utilities
written to help you retrieve whatever information you are interested
in from the output.

Let’s conclude this tutorial by converting the BLAST output in out.txt
into a spreadsheet format, using a Python script. (We’re not doing this
just to confuse you; this is really how we do things around here.)

First, we need to get the script. We’ll do that using the ‘git’ program

git clone https://github.com/ngs-docs/ngs-scripts.git /root/ngs-scripts

We’ll discuss ‘git’ more later; for now, just think of it as a way
to get ahold of a particular set of files. In this case, we’ve placed
the files in /root/ngs-scripts/, and you’re looking to run the
script blast/blast-to-csv.py using Python

python /root/ngs-scripts/blast/blast-to-csv.py out.txt

This outputs a spread-sheet like list of names and e-values. To save this
to a file, do:

python /root/ngs-scripts/blast/blast-to-csv.py out.txt > /root/Dropbox/out.csv

The end file, ‘out.csv’, should soon be in your Dropbox on your local
computer. If you have Excel installed, try double clicking on it.

And that’s the kind of basic workflow we’ll be teaching you:

	Download program

	Download data

	Run program on data

	Look at results

...but in many cases more complicated :).

Note that there’s no limit on the number of sequences you BLAST, etc.
It’s just sheer compute speed and disk space that you need to worry
about, and if you look at the files, it turns out they’re not that big –
so it’s mostly your time and energy.

This will also maybe help you understand why UNIX programs are so
powerful – each program comes with several, or several dozen, little
command line “flags” (parameters), that help control how it does its
work; then the output is fed into another such program, etc. The possibilities
are literally combinatorial.

We’re running a Python program ‘blast-to-csv.py’ above – if you’re
interested in what the Python program does, take a look at the source
code:

https://github.com/ngs-docs/ngs-scripts/blob/master/blast/blast-to-csv.py

Summing up

Command-line BLAST lets you do BLAST searches of any sequences you have,
quickly and easily. It’s probably the single most useful skill a
biologist can learn if they’re doing anything genomics-y ;).

Its main computational drawback is that it’s not fast enough to deal
with some of the truly massive databases we now have, but that’s
generally not a problem for individual users. That’s because they just
run it and “walk away” until it’s done!

The main practical issues you will confront in making use of BLAST:

	getting your sequence(s) into the right place.

	formatting the database.

	configuring the BLAST parameters properly.

	doing what you want after BLAST!

Other questions to ponder:

	if we’re using a pre-configured operating system, why did we have to
install BLAST?

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Short Read Quality Control

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

 	Day 2 – Running BLAST and other things at the command line

Short Read Quality Control

As useful as BLAST is, we really want to get into sequencing data,
right? One of the first steps you must do with your data is
evaluate its quality and try to improve it.

Summary: a sequencing run may contain data of
low reliability. It may also contain various contaminants and artificial
sequence fragments. Some (but not all) of these problem can be corrected.

Caution: Don’t apply any type of correction without evaluating the results
it produces.
In general it is best to be conservative with QC. We are altering
the data based on our expectations of what it should be like! The process may
also introduce its own biases into the dataset.

Biostar QoD (questions of the day)

QC is one of the most mis-under-estimated tasks of NGS data analysis. People
assume there is very little to it once they know how to run the tool.
The reality is a more complicated than that.

QC also happens to be
a pet peeve of mine (Istvan) as demonstrated below in the following
Biostar threads (and others):

	FastQC quality control shootout [https://www.biostars.org/p/53528/]

	So What Does The Sequence Duplication Rate Really Mean In A Fastqc Report [https://www.biostars.org/p/83842/]

	Revisiting the FastQC read duplication report [https://www.biostars.org/p/107402/]

Quick Start

The first part of this tutorial will run on your own computer. It assumes that you have
Java installed. Download both FastQC and two smaller datasets onto your system

	http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

	http://apollo.huck.psu.edu/data/SRR519926_1.fastq.zip

	http://apollo.huck.psu.edu/data/SRR447649_1.fastq.zip

Run FastQC on each the files from the graphical interface. Let’s discuss
the output in more detail.

FastQC at the command line

Before you can do that, though, you need to install a bunch o’ software.

We will use a so called Makefile, a simple text file
that can contains a series of commands that you could otherwise
type in yourself. There will be more information on
shell programming and automation later. For now think of a Makefile
as a simple way to pick which commands you can execute yourself.
Let’s get started. Install make:

sudo apt-get install make -y

You can also investigate the Makefile yourself: https://github.com/ngs-docs/angus/blob/2014/files/Makefile-short-read-quality

This tutorial will download datasets. You may want to create a
directory (folder) that stores this data:

mkdir qc
cd qc

We assume that you are running the subsequent scripts from this folder.

Important

Obtain the Makefile and save it onto your cloud system:

This is where you get the Makefile
wget https://raw.githubusercontent.com/ngs-docs/angus/2014/files/Makefile-short-read-quality -O Makefile

You can investigate the file:

Look at the Makefile
more Makefile or pico Makefile

So we now have a Makefile and our system can
execute this Makefile via the make command.:

make

Setup

In our case you have to always specify which section of the
Makefile do you wish to execute. For example you can type:

make setup

This will execute the parts of the Makefile that is listed below:

 #
 # Run initial setup tasks
 #

 # This directory will contain the executables
 mkdir -p ~/bin

 # Add the ~/bin to the user path
 echo 'export PATH=$PATH:~/bin' >> ~/.bashrc

 # Install the unzip library
 sudo apt-get install -y unzip

 # Change the mount point so it is user writeable
 sudo chmod 777 /mnt

 # Update the installation sources
 sudo apt-get update

 # Install java
 sudo apt-get install -y default-jdk

Note that you could also just type in these commands yourself for
the same results. The Makefile just automates this.

Software Install

The next step is installing FastQC and Trimmomatic on your instance:

make install

command will execute the following lines.

 #
 # The src folder will contain the downloaded software
 #
 mkdir -p ~/src

 #
 # The bin folder will contain the binaries that you have downloaded
 #
 mkdir -p ~/bin

 #
 # Install Trimmomatic
 #
 curl http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.32.zip -o ~/src/Trimmomatic-0.32.zip
 unzip -o ~/src/Trimmomatic-0.32.zip -d ~/src
 ln -fs ~/src/Trimmomatic-0.32/trimmomatic-0.32.jar ~/bin

 #
 # Install FastQC
 #
 curl http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.2.zip -o ~/src/fastqc_v0.11.2.zip
 unzip -o ~/src/fastqc_v0.11.2.zip -d ~/src
 chmod +x ~/src/FastQC/fastqc
 ln -fs ~/src/FastQC/fastqc ~/bin/fastqc

Where did stuff go? The downloaded code went into ~/src the binaries are linked into ~/bin
To test that everything works well type:

fastqc -v

This will print the version number of fastqc

Download Data

Start at your EC2 prompt, then type

make download

This will execute the following lines. Remember that you could also type
these in yourself.

 #
 # Data download
 #
 curl apollo.huck.psu.edu/data/SRR.tar.gz -o SRR.tar.gz

 # Unpack the gzipped data
 tar xzvf SRR.tar.gz

The FASTQ Format

In class explanation of the format. See a good description at
http://en.wikipedia.org/wiki/FASTQ_format

If you don’t understand the format, you don’t understand the basic premise of
the data generation!

Run a FastQC analysis on each dataset:

make fastqc

would run the commands:

 #
 # Run FastQC on every file that we have downloaded.
 #
 fastqc *.fastq

This command will generate an HTML file for each file. Copy these files to your dropbox and
look at them (a short walkthrough on what each plot means).

Alternatively you can generate the fastqc output directly to your Dropbox like so:

fastqc *.fastq -o /mnt/Dropbox

Pattern Matching

We can also investigate what the files contain by matching:

Find start codons
grep ATG SRR519926_1.fastq --color=always | head

Find a subsequence
grep AGATCGGAAG SRR519926_1.fastq --color=always | head

Pattern matching via expressions is an extremely powerful concept. We’ll revisit them later.

Trimming

Note that there are vary large number of tools that perform quality/adapter trimming.

Now, run Trimmomatic [http://www.usadellab.org/cms/index.php?page=trimmomatic]
to eliminate Illumina adapters from your sequences. First we need to find the adapter sequences:

ln -s ~/src/Trimmomatic-0.32/adapters/TruSeq3-SE.fa

Tip

You may also want to shorten the command line like so:

alias trim='java -jar ~/src/Trimmomatic-0.32/trimmomatic-0.32.jar'

You can now invoke the tool just by typing:

trim

Among the (many) agonizing decisions that you will have to make is what
parameters to pick: how big should be my window be, how long should the reads be, what
should be the average quality be? What kinds of contaminants do I have. Run, rerun
and evaluate. Err on the side of caution.

Trim by quality alone:

 #
 # Run the quality trimming.
 #
 java -jar ~/src/Trimmomatic-0.32/trimmomatic-0.32.jar SE SRR447649_1.fastq good.fq SLIDINGWINDOW:4:25 MINLEN:36
 fastqc good.fq -o /mnt/Dropbox

Quality and clipping:

 #
 # Run quality trimming and clipping at the same time.
 #
 java -jar ~/src/Trimmomatic-0.32/trimmomatic-0.32.jar PE SRR519926_1.fastq good1.fq bad1.fq SRR519926_2.fastq good2.fq bad2.fq SLIDINGWINDOW:4:25 MINLEN:36 ILLUMINACLIP:TruSeq3-SE.fa:2:30:10
 fastqc good1.fq -o /mnt/Dropbox

Now a homework:

Note

Read the manual for Trimmomatic [http://www.usadellab.org/cms/index.php?page=trimmomatic].
Trim the reads in parallel for both readfiles in a sample.

Note

BTW: cool kids have pretty prompts, but you too can be cool, all you need to do is:

echo "export PS1='\[\e]0;\w\a\]\n\[\e[32m\]\u@\h \[\e[33m\]\w\[\e[0m\]\n\$ '" >> ~/.bashrc

Then relog. Don’t ask why this works, it is one of those things that is best left undisturbed.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Variant calling

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Variant calling

The goal of this tutorial is to show you the basics of variant calling
using Samtools [http://samtools.sourceforge.net/].

We’ll be using data from one of Rich Lenski’s LTEE papers, the one on
the evolution of citrate consumption in LTEE [http://www.nature.com/nature/journal/v489/n7417/full/nature11514.html].

Booting an Amazon AMI

Start up an Amazon computer (m1.large or m1.xlarge) using AMI
ami-7607d01e (see Start up an EC2 instance and
Starting up a custom operating system).

Log in with Windows or
from Mac OS X.

Updating the operating system

Copy and paste the following two commands

apt-get update
apt-get -y install screen git curl gcc make g++ python-dev unzip \
 default-jre pkg-config libncurses5-dev r-base-core \
 r-cran-gplots python-matplotlib sysstat

to update the computer with all the bundled software you’ll need.

Install software

First, we need to install the BWA aligner [http://bio-bwa.sourceforge.net/]:

cd /root
wget -O bwa-0.7.10.tar.bz2 http://sourceforge.net/projects/bio-bwa/files/bwa-0.7.10.tar.bz2/download

tar xvfj bwa-0.7.10.tar.bz2
cd bwa-0.7.10
make

cp bwa /usr/local/bin

Also install samtools:

apt-get -y install samtools

Download data

Download the reference genome and the resequencing reads:

cd /mnt

curl -O http://athyra.idyll.org/~t/REL606.fa.gz
gunzip REL606.fa.gz

curl -O ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR098/SRR098038/SRR098038.fastq.gz

Note, this last URL is the “Fastq files (FTP)” link from the European
Nucleotide Archive (ENA) for this sample:
http://www.ebi.ac.uk/ena/data/view/SRR098042.

Do the mapping

Now let’s map all of the reads to the reference. Start by indexing the
reference genome:

cd /mnt

bwa index REL606.fa

Now, do the mapping of the raw reads to the reference genome:

bwa aln REL606.fa SRR098038.fastq.gz > SRR098038.sai

Make a SAM file (this would be done with ‘sampe’ if these were paired-end
reads):

bwa samse REL606.fa SRR098038.sai SRR098038.fastq.gz > SRR098038.sam

This file contains all of the information about where each read hits
on the reference.

Next, index the reference genome with samtools:

samtools faidx REL606.fa

Convert the SAM into a BAM file:

samtools import REL606.fa.fai SRR098038.sam SRR098038.bam

Sort the BAM file:

samtools sort SRR098038.bam SRR098038.sorted

And index the sorted BAM file:

samtools index SRR098038.sorted.bam

Visualizing alignments

At this point you can visualize with samtools tview or Tablet [http://bioinf.scri.ac.uk/tablet/].

‘samtools tview’ is a text interface that you use from the command
line; run it like so:

samtools tview SRR098038.sorted.bam REL606.fa

The ‘.’s are places where the reads align perfectly in the forward direction,
and the ‘,’s are places where the reads align perfectly in the reverse
direction. Mismatches are indicated as A, T, C, G, etc.

You can scroll around using left and right arrows; to go to a specific
coordinate, use ‘g’ and then type in the contig name and the position.
For example, type ‘g’ and then ‘rel606:553093<ENTER>’ to go to
position 553093 in the BAM file.

Use ‘q’ to quit.

For the Tablet viewer [http://bioinf.scri.ac.uk/tablet/], click on
the link and get it installed on your local computer. Then, start it
up as an application. To open your alignments in Tablet, you’ll need
three files on your local computer: REL606.fa, SRR098042.sorted.bam,
and SRR098042.sorted.bam.bai. You can copy them over using Dropbox,
for example.

Counting alignments

This command:

samtools view -c -f 4 SRR098038.bam

will count how many reads DID NOT align to the reference (214518).

This command:

samtools view -c -F 4 SRR098038.bam

will count how many reads DID align to the reference (6832113).

And this command:

gunzip -c SRR098038.fastq.gz | wc

will tell you how many lines there are in the FASTQ file (28186524).
Reminder: there are four lines for each sequence.

Calling SNPs

You can use samtools to call SNPs like so:

samtools mpileup -uD -f REL606.fa SRR098038.sorted.bam | bcftools view -bvcg - > SRR098038.raw.bcf

(See the ‘mpileup’ docs here [http://samtools.sourceforge.net/mpileup.shtml].)

Now convert the BCF into VCF:

bcftools view SRR098038.raw.bcf > SRR098038.vcf

You can check out the VCF file by using ‘tail’ to look at the bottom:

tail *.vcf

Each variant call line consists of the chromosome name (for E. coli
REL606, there’s only one chromosome - rel606); the position within the
reference; an ID (here always ‘.’); the reference call; the variant
call; and a bunch of additional information about

Again, you can use ‘samtools tview’ and then type (for example) ‘g’
‘rel606:4616538’ to go visit one of the positions. The format for the
address to go to with ‘g’ is ‘chr:position’.

You can read more about the VCF file format here [http://www.1000genomes.org/node/101].

Questions/discussion items

Why so many steps?

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Assembling E. coli sequences with Velvet

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Assembling E. coli sequences with Velvet

The goal of this tutorial is to show you the basics of assembly using
the Velvet assembler [http://en.wikipedia.org/wiki/Velvet_assembler].

We’ll be using data from Efficient de novo assembly of single-cell
bacterial genomes from short-read data sets, Chitsaz et al., 2011 [http://www.ncbi.nlm.nih.gov/pubmed/21926975].

Booting an Amazon AMI

Start up an Amazon computer (m1.large or m1.xlarge) using AMI
ami-7607d01e (see Start up an EC2 instance and
Starting up a custom operating system).

Log in with Windows or
from Mac OS X.

Logging in

Log in and type:

sudo bash

to change into superuser mode.

Updating the operating system

Copy and paste the following two commands

apt-get update
apt-get -y install screen git curl gcc make g++ python-dev unzip \
 default-jre pkg-config libncurses5-dev r-base-core \
 r-cran-gplots python-matplotlib sysstat

to update the computer with all the bundled software you’ll need.

Packages to install

Install khmer [http://khmer.readthedocs.org/en/v1.1/]:

cd /usr/local/share
git clone https://github.com/ged-lab/khmer.git
cd khmer
git checkout v1.1
make install

and install the Velvet assembler:

cd /root
curl -O http://www.ebi.ac.uk/~zerbino/velvet/velvet_1.2.10.tgz
tar xzf velvet_1.2.10.tgz
cd velvet_1.2.10
make MAXKMERLENGTH=51
cp velvet? /usr/local/bin

as well as Quast [http://quast.bioinf.spbau.ru/manual.html],
software for evaluating the assembly against the known reference:

cd /root
curl -O -L https://downloads.sourceforge.net/project/quast/quast-2.3.tar.gz
tar xzf quast-2.3.tar.gz

Getting the data

Now, let’s create a working directory:

cd /mnt
mkdir assembly
cd assembly

Download some E. coli data. The first data set
(ecoli_ref-5m-trim.fastq.gz) is the trimmed PE data sets from the
other day (see Short Read Quality Control), and the second
data set is a specially processed data set using digital
normalization [http://ged.msu.edu/papers/2012-diginorm/] that will
assemble quickly.

curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoli_ref-5m-trim.fastq.gz
curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoli-reads-5m-dn-paired.fa.gz

Running an assembly

Now... assemble the small, fast data sets, using the Velvet assembler. Here
we will set the required parameter k=21:

velveth ecoli.21 21 -shortPaired -fasta.gz ecoli-reads-5m-dn-paired.fa.gz
velvetg ecoli.21 -exp_cov auto

Check out the stats for the assembled contigs for a cutoff of 1000:

python /usr/local/share/khmer/sandbox/assemstats3.py 1000 ecoli.*/contigs.fa

Also try assembling with k=23 and k=25:

velveth ecoli.23 23 -shortPaired -fasta.gz ecoli-reads-5m-dn-paired.fa.gz
velvetg ecoli.23 -exp_cov auto

velveth ecoli.25 25 -shortPaired -fasta.gz ecoli-reads-5m-dn-paired.fa.gz
velvetg ecoli.25 -exp_cov auto

Now check out the stats for the assembled contigs for a cutoff of 1000:

python /usr/local/share/khmer/sandbox/assemstats3.py 1000 ecoli.*/contigs.fa

(Also read: What does k control in de Bruijn graph assemblers? [http://ivory.idyll.org/blog/the-k-parameter.html].)

Comparing and evaluating assemblies - QUAST

Download the true reference genome:

cd /mnt/assembly
curl -O https://s3.amazonaws.com/public.ged.msu.edu/ecoliMG1655.fa.gz
gunzip ecoliMG1655.fa.gz

and run QUAST:

/root/quast-2.3/quast.py -R ecoliMG1655.fa ecoli.*/contigs.fa

Note that here we’re looking at all the assemblies we’ve generated.

Now look at the results:

more quast_results/latest/report.txt

The first bits to look at are Genome fraction (%) and # misassembled contigs,
I think.

Searching assemblies – BLAST

Install BLAST:

cd /root

curl -O ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/blast-2.2.24-x64-linux.tar.gz
tar xzf blast-2.2.24-x64-linux.tar.gz
cp blast-2.2.24/bin/* /usr/local/bin
cp -r blast-2.2.24/data /usr/local/blast-data

Build BLAST databases for the assemblies you’ve done:

cd /mnt/assembly

for i in 21 23 25
do
 extract-long-sequences.py -o ecoli-$i.fa -l 500 ecoli.$i/contigs.fa
 formatdb -i ecoli-$i.fa -o T -p F
done

and then let’s search for a specific gene – first, download a file containing
your protein sequence of interest:

curl -O http://athyra.idyll.org/~t/crp.fa

and now search:

blastall -i crp.fa -d ecoli-21.fa -p tblastn -b 1 -v 1

Questions and Discussion Points

Why do we use a lower cutoff of 1kb for the assemstats3 links, above? Why
not 0?

Followup work

Try running an assembly of the larger read data set:

velveth ecoli-full.31 31 -short -fastq.gz ecoli_ref-5m-trim.fastq.gz
velvetg ecoli-full.31 -exp_cov auto

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) --

 Interval Analysis and Visualization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	angus 5.0 documentation

Interval Analysis and Visualization

The results generate below are based on a question posed by a participant in the course.
She wanted to know how well contigs of an unfinished genomic build of and ecoli strain
match the common (K-12 strain MG1655) genomic build.

Download the results from:

http://apollo.huck.psu.edu/data/ms115.zip

How did we get the results in the file above? A short description follows:

Data collection

The partial genomic build is located at:

http://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=161608

From this we downloaded the summary file code/ADTL01.txt
that happens to be a tab delimited file that lists accession numbers.
We then wrote a very simple program code/getdata.py to parse
the list of accessions and download the data like so

requires BioPython
from Bio import Entrez
Entrez.email = "A.N.Other@example.com"
stream = file("ADTL01.txt")
stream.next()

for line in stream:
 elems = line.strip().split()
 val = elems[1]
 handle = Entrez.efetch(db="nucleotide", id=val, rettype="fasta", retmode="text")
 fp = file("data/%s.fa" % val, 'wt')
 fp.write(handle.read())
 fp.close()

Finally we merged all data with:

cat *.fa > MS115.fa

Then we went hunting for the EColi genome, we found it here:

http://www.genome.wisc.edu/sequencing/updating.htm

Turns out that this site only distributes a GBK (Genbank file).
We now need to extract the information from the
GBK file to FASTA (genome) and GFF (genomic feature) file. For this we need to
install the ReadSeq program:

http://iubio.bio.indiana.edu/soft/molbio/readseq/java/

Once we have this we typed:

GBK to GFF format
java -jar readseq.jar -inform=2 -f 24 U00096.gbk

GBK to FASTA
java -jar readseq.jar -inform=2 -f 24 U00096.gbk

This will create the files U00096.gbk.fasta and U00096.gbk.gff

Now lets map the ms115.fa contigs to the U00096.fa reference:

bwa index U00096.fa
bwa mem U00096.fa ms115.fa | samtools view -bS - | samtools sort - U00096

will produce the U00096.bam file. We have converted the U00096.bam to BED format
via the:

bedtools bamtobed -i U00096.bam > U00096.bed

Visualizing the data

Download and run IGV

http://www.broadinstitute.org/igv/

Create a custom genome via Genomes -> Create .genome options

We will now visualize the BAM, GFF and BED files and discuss the various aspects of it.

Running bedtools

Install bedtools:

sudo apt-get bedtools

This works best if you store your files in Dropbox, that way you can
edit the file on your computer then load them up on your IGV instance.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 Licens