Phylogeny-based methods for analysing genomes and metagenomes

Presented by Aaron Darling
OTUs for ecology

Operational Taxonomic Unit: a grouping of similar sequences that can be treated as a single “species”

- **Strengths**
 - Conceptually simple
 - Mask effect of poor quality data
 - Sequencing error
 - *in vitro* recombination

- **Weaknesses**
 - Limited resolution
 - Logically inconsistent definition
Logical inconsistency: OTUs at 97% ID

Assume the true phylogeny:

OTU pipelines will arbitrarily pick one of the three solutions. Is this actually a problem??

Possible valid OTUs:
AB, C (with A & C centroids)
A, BC (with A & C centroids)
ABC (with B centroid)
Limited resolution

OTU groupings ignore the fine structure present in phylogeny
Same species, different genomes

Perna et al 2001 *Nature*, Welch et al 2002 *PNAS*

Three genomes, same species only 40% genes in common
Phylogeny: an alternative path

Many ecological analyses can be based on phylogeny:
- Alpha diversity (e.g. species diversity)
- Beta diversity (e.g. comparison of species across samples)
- Community assembly

So... what is a phylogeny, anyway?
Imagine you are dating a paleontologist...

VS.

T._rex Stego Veloci Fluffy

T._rex Stego Veloci Fluffy
Now imagine you've got dino DNA...

Let's try to reject the reviewer's phylogeny using DNA evidence!

Multiple alignment (MUSCLE, FSA, etc)

T_rex
ACC
>Stego
TCC
>Veloci
ACG
>Fluffy
ATCG
How does DNA evolve?

- Simplest model: all nucleotides are equally common, all changes from one to another equally likely (Jukes and Cantor, 1969)

Rate of substitution is $u/3$ per unit time

Expected number of changes on branch of length t is $(4/3)ut$

Prob. of no change: $e^{-(4/3)ut}$

Prob. of at least one change: $1 - e^{-(4/3)ut}$

Prob. of e.g. A to C is $\text{Prob}(C|A,u,t) = (1/4)(1 - e^{-(4/3)ut})$
Calculating the likelihood of data given a tree

Steps:

1) Branch lengths
2) Finite-time transition probabilities
3) Leaf node partial probabilities

$$P(X|Y,u,t) = \frac{1}{4}(1 - e^{-(4/3)ut})$$

- $P(X|Y,0.1,1.0) = 0.0312$
- $P(X|X,0.1,1.0) = 0.9064$
- $P(X|Y,0.1,2.0) = 0.0585$
- $P(X|X,0.1,2.0) = 0.8244$

q r s

Finite time transition matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.91</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>C</td>
<td>0.03</td>
<td>0.91</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>G</td>
<td>0.03</td>
<td>0.03</td>
<td>0.91</td>
<td>0.03</td>
</tr>
<tr>
<td>T</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Calculating the likelihood of data given a tree

Sites evolve independently. Calculate site likelihoods one-at-a-time

\[
\begin{align*}
\text{T}_\text{rex} & \quad \text{A-CC} \\
\text{Stego} & \quad \text{-TCC}
\end{align*}
\]

Matrix multiply site T_rex 1:

\[
\begin{bmatrix}
\text{A} & \text{C} & \text{G} & \text{T}
\end{bmatrix}
\begin{bmatrix}
\text{A} & \text{C} & \text{G} & \text{T}
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.91 & 0.03 & 0.03 & 0.03 \\
0.03 & 0.91 & 0.03 & 0.03 \\
0.03 & 0.03 & 0.91 & 0.03 \\
0.03 & 0.03 & 0.03 & 0.91 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0.91 \\
0.03 \\
0.03 \\
0.03 \\
\end{bmatrix}
\]

Matrix multiply site Stego 1:

\[
\begin{bmatrix}
\text{A} & \text{C} & \text{G} & \text{T}
\end{bmatrix}
\begin{bmatrix}
\text{A} & \text{C} & \text{G} & \text{T}
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.91 & 0.03 & 0.03 & 0.03 \\
0.03 & 0.91 & 0.03 & 0.03 \\
0.03 & 0.03 & 0.91 & 0.03 \\
0.03 & 0.03 & 0.03 & 0.91 \\
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0.91 \\
0.03 \\
0.03 \\
0.03 \\
\end{bmatrix}
\]

Joint prob T_rex & Stego:

\[
\begin{align*}
\text{T}_\text{rex} & \quad \text{A} .91 \\
\text{Stego} & \quad \text{A} .91
\end{align*}
\]
Calculating the likelihood of data given a tree

Tree likelihood is product of sites:
\[L = 0.0007216 \]
\[\log(L) = -9.536 \]
Hypothesis testing with tree likelihoods

The likelihood ratio test

\[L = 0.00007216 \]

\[L = 0.000010348 \]

Take the ratio of likelihoods:
\[\frac{0.00007216}{0.000010348} = 6.973328 \]

Reviewer's tree \(~7\) times less likely
What if you don't know the tree?
Many methods for tree inference

- Parsimony, Distance, **Maximum Likelihood, Bayesian**
- Maximum Likelihood
 - FastTree, RAxML, GARLI, PHYML, etc.
- Bayesian
 - MrBayes, BEAST, PhyloBayes
 - All based on Markov chain Monte Carlo (MCMC) algorithms

Number of unrooted tree topologies with \(n \) tips:

\[
(2n - 3)!! = \frac{(2n - 3)!}{2^{n-2}(n-2)!}
\]

<table>
<thead>
<tr>
<th>Trees with:</th>
<th>4 tips</th>
<th>6 tips</th>
<th>8 tips</th>
<th>10 tips</th>
<th>50 tips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>105</td>
<td>20,395</td>
<td>2,027,025</td>
<td>2.84 \times 10^{74}</td>
</tr>
</tbody>
</table>

Bottom line: tree inference is *hard*
Estimated number of atoms in observable universe: \(\sim 10^{80} \)
Using phylogenies for microbial ecology

- Building phylogeny from >1M sequences: **impossible**
- Alternative: place new sequences on reference tree
 - RAxML-EPA: Berger *et al* 2011 *Systematic biology*
 - pplacer: Matsen *et al* 2010 *BMC Bioinformatics*

A “fat” tree: showing number of placements on each branch

Reference sequences

New seqs placed on tree
Handling uncertainty

- Bayesian placement (pplacer)
 - Calculate probability of new sequence on each branch
 - pplacer can do this quickly, analytically (no MCMC)

A single sequence with uncertain placement

Placement distribution viewed as a fat tree

Placement is starting to look better than OTUs
Uncertainty in many sequences

- Combine placement distributions from all seqs in sample
Using a placement distrib.: alpha diversity

• Phylogenetic diversity is sum length of branches covered

\[
\text{Sample PD is } 0.01 + 0.01 + 0.01 + 0.01 + 0.01 = 0.05
\]

• BWPD: Balance-weighted phylogenetic diversity (Barker 2002)
 – Intuition: weight the contribution each lineage makes to PD by its relative abundance
 – Weights can reflect placement uncertainty
BWPD_θ: partial weighting for PD

- A 1-parameter function interpolates between PD and BWPD (Matsen & McCoy 2013, *PeerJ*).
- When θ = 0 it is simply PD. θ = 1 it is BWPD.
- Matsen & McCoy compare:
 - OTU-based diversity metrics
 - Phylogenetic diversity (Faith 1992)
 - Phylogenetic quadratic entropy (Allen, Kon & Bar-Yam 2009)
 - qD(T) (Chao, Chiu, Jost 2010)
 - BWPD (Barker 2002)
 - BWPD_θ

on 3 different microbial communities, measuring correlation of diversity & phenotype
 - Vaginal, oral, & skin microbiomes

- θ=0.25 & θ=0.5 have highest correlation with microbial community phenotypes
- OTU based diversity metrics have least correlation with phenotype
Beta diversity: Edge Principal Component Analysis

• Edge PCA for exploratory data analysis (Matsen and Evans 2013)

• Given E edges and S samples:
 - For each edge, calculate difference in placement mass on either side of edge
 - Results in $E \times S$ matrix
 - Calculate $E \times E$ covariance matrix
 - Calculate eigenvectors, eigenvalues of covariance matrix

• Eigenvector: each value indicates how “important” an edge is in explaining differences among the S samples

Example calculating a matrix entry for an edge:
This edge gets 5-2=3
Branches are thickened & colored according to the amount they shift the sample along an axis

Matsen & Evans 2012 *PLoS ONE*
Edge PCA and the vagina

- Samples colored according to Nugent score of bacterial vaginosis: blue → healthy, red → sick

 (Matsen & Evans 2012)
How to do it?

1. Find reference sequences
2. Align reference sequences
3. Infer reference phylogeny
4. For each sample:
 4.1. Add sequences to alignment
 4.2. Place sequences on tree
5. Alpha & Beta diversity analysis

Each step is a unix command
PhyloSift: genome and metagenome phylogeny

Illumina reads placed onto reference gene family trees

- 40 “elite” families: universal among ~4000 Bact, Arch, Euk genomes (Lang et al 2013, Wu et al 2013)
- 350,000 “extended” families: SFAMs (Sharpton et al 2012)
- Amino-acid and nucleotide alignments+phylogenies

Darling et al 2014 PeerJ.
Using phylosift

Download phylosift: phylosift.wordpress.org

bin/phylosift all --output=hmp tutorial_data/HMP_1.fastq.gz

open hmp/HMP_1.fastq.gz.html

Shows taxonomic plot (Mac)

bin/guppy fpd --theta 0.25,0.5 hmp/*.gz.jplace

Alpha diversity

bin/guppy e pca --prefix pca hmp/*.gz.jplace

Beta diversity (min 3 samples)

More examples at: phylosift.wordpress.org

Raw illumina data
QIIME vs. PhyloSift

Data from Yatsunenko et al 2012. 16S amplicon & metagenomes from same samples.

Phylosift on proteins & 16S produces similar results to QIIME on amplicon data.
Phylogenetic alpha diversity

Data from Yatsunenko et al 2012

- Growth in PD over life
- BWPD is biphasic
PhyloSift compute requirements

- You don't need a huge computer to run PhyloSift
phylosift and major life events
On December 3rd 2010, Kai and his microbiome were born
Lots of nappies, lots of sampling

Kai Darling born 3rd Dec. 2010 in California, flew to Sydney 3.5 weeks later

March 1st 2011: a lot of poop in tubes and no idea how to get it through USA quarantine

Tiffanie Nelson at UNSW:
Extracted DNA with PowerSoil kits, mailed to USA
Metagenomics on a shoestring budget*

“Homebrew” Illumina Nextera library prep protocol:

Goal: metagenomics as easy as 16S amplicon studies

Strategy: Transposon-catalyzed library prep.
Express & purify Tn5 from pWH1891. Custom adapters. 2.5ng input
Pool samples as early as possible.

Results: Sequenced 45 time points in HiSeq 2000 lane
~ $1 / library reagent costs, 100s of libraries in a day, NO ROBOTS

*Infant microbiome sequencing sponsored by private funds
PhyloSift view of fecal microbiome at three weeks age

- Tree-browsing of read placement mass (via archaeopteryx)
- Taxonomic summary plots in Krona (Ondov et al 2011)
Alpha diversity of gut communities vs. time

- Standard & balance-weighted PD (McCoy & Matsen, 2013)
- Phylogenetic diversity (PD) decreases?!

Pearson's cor: -0.44, \(p = 0.005 \)
(p < 10\(^{-6}\) without formula samples)

Pearson's cor: 0.21, \(p = 0.18 \)
(\(p = 0.0071 \) w/o formula)

B. thetaiotaomicron becomes dominant
Phylogenetic “Edge PCA” on infant fecal microbiome

Edge PCA: explain variation in community structure among many samples

Matsen & Evans 2013 PLoS ONE

Infant gut timeseries

Up: Bifidobacterium longum

3rd PC (1%):
Staphylococcus Veillonella

Up: Bacteroides, Down: Bifidobacterium
Formula-fed samples within one day

Up: Bifidobacterium longum

A day on formula

One week on formula,
Six poops in one day.

Up: Bacteroides, Down: Bifidobacterium
Thanks!