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What	we	will	cover	today
• Absolute	fundamentals	of	experimental	design
• Why	we	use	count	data	as	input
• Introducing	a	bit	of	probability	to	why	many	RNA	
Differential	analysis	tools	use	a	negative	binomial.

• Why	do	care	about	variance/over-dispersion	so	much.
• How	do	we	estimate	over-dispersion	with	small	sample	
sizes	(and	why	edgeR and	DGE	give	different	results).

• A	bit	about	dealing	with	multiple	comparisons	(if	we	
have	time).



Goals
I	am	not	planning	on	trying	to	provide	any	sort	of	overview	of	
statistical	methods	for	genomic	data.	Instead	I	am	going	to	
provide	a	few	short	ideas	to	think	about.

Statistics	(like	bioinformatics)	is	a	rapidly	developing	area,	in	
particular	with	respect	to	genomics.	Rarely	is	it	clear	what	the	
“right	way”	to	analyze	your	data	is.

Instead	I	hope	to	aid	you	in	using	some	common	sense	when	
thinking	about	your	experiments	for	using	high	throughput	
sequencing.



Caveats

• There	are	whole	courses	on	proper	
experimental	design	and	statistics.	Great	
books	too.	This	material		in	Bio720	is	not	
enough!

• For	experimental	design	I	highly	recommend:
– Quinn	&	Keough:	Experimental	Design	and	data	
analysis	for	biologists.

http://www.amazon.com/Experimental-Design-Data-Analysis-Biologists/dp/0521009766/	



The	basics	of	experimental	design

• There	are	a	few	basic	points	to	always	keep	in	
mind:
– Biological	replication	(as	much	as	you	can	afford)	is	
extremely	important.	To	robustly	identify	differentially	
expressed	(DE)	genes	requires	statistical	powers.	
• (note:	this	is	not	how	many	reads	you	have	for	a	gene	within	
a	sample,	but	how	many	biologically/statistically	
independent	samples	per	treatment).

– Technical	replication	does	not	help	with	statistical	
power	(i.e.	don’t	split	a	single	sample	and	run	as	two	
libraries).



Biological	replication	gives	far	more	statistical	
power	than	increased	sequencing	depth	within	

a	biological	sample!!!!

• Sequencing	(and	library	prep)	costs	are	still	sufficiently	
expensive	that	most	experiments	use	small	numbers	of	
biological	replicates.

• Given	the	additional	costs	of	library	costs	
(~225$/sample	at	our	facility),	many	folks	go	for	
increased	depth	instead	of	more	samples.

• For	a	given	level	of	sequencing	depth	(total)	for	a	
treatment,	it	is	far	better	to	go	for	more	biological	
replicates,	each	at	lower	sequencing	depth	(rather	than	
fewer	replicated	at	higher	sequencing	depth).



Biological	replication	gives	far	more	statistical	power	
than	increased	sequencing	depth	within	a	biological	

sample!!!!

Robles	et	al.	2012



How	do	the	methods	compare	in	
simulation?

Kvam et	al.	2012



The	basics	of	experimental	design

• There	are	a	few	basic	points	to	always	keep	in	
mind:
– Biological	replication.
– Design	your	experiment	to	avoid	confounding
your	different	treatments	(sex,	nutrition)	with	
each	other	or	with	technical	variables	(lane	within	
a	flow	cell,	between	flow	cell	variation).
• Make	diagrams/tables	of	your	experimental	design,	or	
use	a	randomized	design.



The	basics	of	experimental	design

• There	are	a	few	basic	points	to	always	keep	in	
mind:
– Biological	replication.
– Design	experiment	to	avoid	confounding variables.
– Sample	individuals	(within	treatment)	randomly!



Useful	references

Paul	L.	Auer	and	R.W.	Doerge 2010.	Statistical	Design	and	Analysis	of	RNA-Seq
Data.	Genetics.	10.1534/genetics.110.114983
PMID:	20439781

Bullard,	J.	H.,	Purdom,	E.,	Hansen,	K.	D.,	&	Dudoit,	S.	(2010).	Evaluation	of	
statistical	methods	for	normalization	and	differential	expression	in	mRNA-Seq
experiments	BMC	Bioinformatics,	11,	94.	doi:10.1186/1471-2105-11-94



Designing	your	experiment	before	you	
start.

Sampling

Replication

Blocking

Randomization

Over	all	we	are	going	to	be	thinking	
about	how		to	avoid	Confounding	
sources	of	variation	in	the	data.

All	of	these	are	larger	topics	that	are	
part	of	Experimental	Design.



Sampling

Sampling

Replication

Blocking

Randomization

Sampling	design	is	all	about	making	sure	that	
when	you	“pick”	(sample)	observations,	you	
do	so	in	a	random and	unbiasedmanner.	

Proper	sampling	aims	to	control	for	unknown	
sources	of	variation	that	influence	the	
outcome	of	your	experiments.

This	seems	reasonable,	and	often	intuitive	to	
most	experimental	biologists,	but	it	can	be	
very	insidious.
Whiteboard…



Sampling

Sampling

Replication

Blocking

Randomization



Biological	replicates	Not	technical	
ones.

• There	is	little	purpose	in	using	technical	
replication	(i.e.	same	sample,	multiple	library	
preps)	from	a	given	biological	sample	UNLESS	
part	of	your	question	revolves	around	it.

• Focus	on	biological	variability.	While	you	are	
confounding	some	sources	of	technical	and	
biological	variability,	we	already	know	a	lot	about	
the	former,	and	little	about	the	latter	(in	
particular	for	your	system).



Replication

Sampling

Replication

Blocking

Randomization

Imagine	you	have	an	experiment	with	one	factor	(sex),	with	two	
treatment	levels	(	males	and	females).

You	want	to	look	for	sex	specific	differences	in	the	brains	of	your	
critters	based	on	transcriptional	profiling,	so	you	decide	to	use	
RNA-seq.

Perhaps	you	have	a	limited	budget	so	you	decide	to	run	one	
sample	of	male	brains,	and	one	sample	of	female	brains,	each	in	
one	lane	of	a	flow	cell.

What	(useful)	information	can	you	get	out	of	this?

Not	much	(but	there	may	be	some).		Why?



Replication

Sampling

Replication

Blocking

Randomization

Why?

No	replication.	How	will	you	know	if	the	differences	you	observe	
are	due	to	differences	in	males	and	females,	random	(biological)	
differences	between	individuals,	or	technical	variation	due	to	
RNA	extraction,	processing	or	running	the	samples	on	different	
lanes.

All	of	these	sources	of	variation	are	confounded,		and	there	are	
no	particularly	good	ways	of	separating	them	out.

But	there	are	lots	of	sources	of	variation,	so	how	do	we	account	
for	these?



Replication

Sampling

Replication

Blocking

Randomization

To	date,	several	studies	have	suggested	that	“technical”	
replicates	for	RNA-seq show	very	little	variation/	high	
correlation.

Mortazavi et	al.	2008

How	might	such	a	statement	be	misleading	about	variation?



Replication

Sampling

Replication

Blocking

Randomization

This	study	looked	at	a	single	source	of	technical	variation.

Running	exactly	the	same	sample	on	two	different	lanes	on	a	
flow	cell.

This	completely	ignores	other	sources	of	“technical	variation”
variation	due	to	RNA	purification
variation	due	to	fragmentation,	labeling,	etc..
lane	to	lane	variation
flow	cell	to	flow	cell	variation

All	of	these	may	be	important	(although	unlikely	interesting)	
sources	of	variation…

However…..



Replication

Sampling

Replication

Blocking

Randomization

Many	studies	have	ignored	the	BIOLOGICAL	SOURCES	of	
VARIATION	between	replicates.	In	most	cases	biological	
variation	between	samples	(from	the	same	treatment)	are	
generally	far	more	variable	than	technical	sources	of	variation.

While	it	would	be	nice	to	be	able	to	partition	various	sources	of	
technical	variation	(such	as	labeling,	RNA	extraction),	it	often	
too	expensive	to	perform	such	a	design	(see	white	board).

IF	you	have	limited	resources,	it	is	generally	far	better	to	have	
biological	replication	(independent	biological	samples	for	a	
given	treatment)	than	technical	replication.

Does	these	lead	to	confounded	sources	of	variation?



Blocking

Sampling

Replication

Blocking

Randomization

Blocks	in	experimental	design	represent	some	factor	
(usually	something	not	of	major	interest)	that	can	strongly	
influence	your	outcomes.	More	importantly	it	is	a	factor	
which	you	can	use	to	group	other	factors	that	you	are	
interested	in.

For	instance	in	agriculture	there	is	often	plot	to	plot	
variation.	You	may	not	be	interested	in	the	plot	themselves	
but	in	the	variety	of	crops	you	are	growing.

But	what	would	happen	if	you	grew	all	of	strain	1	on	plot	1	
and	all	of	strain	2	on	plot	2?

Whiteboard.

These	plots	would	represent	blocking	levels



Blocking

Sampling

Replication

Blocking

Randomization

In	genomic	studies	the	major	blocking	levels	are	often	the	
slide/chip	for	microarrays	(i.e.	two	samples	/slide	for	2	
color	arrays,	16	arrays/slide	for	Illumina arrays).

For	GAII/HiSeq RNA-seq data	the	major	blocking	effect	is	
the	flow	cell	itself	and	lanes	within	the	flow	cell.

Auer	and	Doerge 2010



Blocking

Sampling

Replication

Blocking

Randomization

Incorporating	lanes	as	a	blocking	effect

Auer	and	Doerge 2010



Blocking	designs

Sampling

Replication

Blocking

Randomization

Balanced	Incomplete	Blocking
Design	(BIBD)

Let’s	dissect	these	subscripts.

Balanced	for	treatments	across	flow	cells..	Randomized	for	location Auer	and	Doerge 2010



What	standard	technical	issues	should	
you	consider	for	blocking:

• Flow	Cell
• Lane
• Adaptors
• Library	prep
• Same	instrument
• People!
• RNA	extraction/purification



What	happens	when	you	fail	to	block	
(or	replicate)?



Yue F,	Cheng	Y,	Breschi A,	et	al.:	A	comparative	encyclopedia	of	DNA	elements	in	the	mouse	genome.	Nature.	
2014;	515(7527):	355–364

Lin	S,	Lin	Y,	Nery JR,	et	al.:	Comparison	of	the	transcriptional	landscapes	between	human	and	mouse	tissues.	
Proc	Natl Acad Sci U	S	A.	2014;	111(48):	17224–17229

In		a	recent	analysis	of	the	mod-encode	data,	RNAseq data	suggested	that	
clustering	(for	gene	expression)	more	by	species	than	by	tissue.		This	was	an	
unusual	finding.



Gilad Y	and	Mizrahi-Man	O.	A	reanalysis	of	mouse	ENCODE	comparative	gene	expression	data	
[v1;	ref	status:	indexed,	http://f1000r.es/5ez]	F1000Research	2015,	4:121	(doi:	
10.12688/f1000research.6536.1)

A	new	re-analysis	demonstrated	some	
potentially	serious	issues	with	the	experimental	
design



Figure	1.	Study	design for	:
Yue F,	Cheng	Y,	Breschi A,	et	al.:	A	comparative	encyclopedia	of	DNA	elements	in	the	mouse	genome.	Nature.	

2014;	515(7527):	355–364
Lin	S,	Lin	Y,	Nery JR,	et	al.:	Comparison	of	the	transcriptional	landscapes	between	human	and	mouse	tissues.	

Proc	Natl Acad Sci U	S	A.	2014;	111(48):	17224–17229

Gilad	Y	and	Mizrahi-Man	O	2015	[v1;	ref	status:	awaiting	peer	review,	http://f1000r.es/5ez]	
F1000Research	2015,	4:121	(doi:	10.12688/f1000research.6536.1)



Differential	expression

• Probably	the	single	most	common	use	of	RNA-
Seq data	is	examine	differential	expression	of	
transcripts	(transcriptional	profiles).	



Differential	expression

• But	differential	expression	of	what?



Differential	expression

• But	differential	expression	of	what?
– Genes
– Transcripts	(alternative	transcripts)
– Allele	specific	expression
– Exon level	expression



Your	primary	goals	of	your	experiment	
should	guide	your	design.

• The	exact	details	(#	biological	samples,	sample	
depth,	read_length,	strand	specificity)	of	how	
you	perform	your	experiment	needs	to	be	
guided	by	your	primary	goal.

• Unless	you	have	all	the	$$,	no	single	design	
can	capture	all	of	the	variability.



Your	goals	matter

• For	instance:	If	your	primary	interest	in	discovery	
of	new	transcripts,	sampling	deeply	within	a	
sample	is	probably	best.	

• For	differential	expression	analyses,	you	will	
almost	never	have	the	ability	to	perform	
Differential	expression	analysis	on	very	rare	
transcripts,	so	it	is	rarely	useful	to	generate	more	
than	15-20	million	read	pairs	per	biological	
sample.



A	simple	truth:
There	is	no	technology	nor	statistical	

wizardry	that	can	save	a	poorly	
planned	experiment.	The	only	truly	
failed	experiment	is	a	poorly	planned	

one.

To	consult	the	statistician	after	an	experiment	is	finished	is	often	merely	to	ask	
him(her)	to	conduct	a	post	mortem	examination.	He(she)	can	perhaps	say	what	the	
experiment	died	of.

Ronald	Fisher





Counting

• One	of	the	most	difficult	issues	has	been	how	
to	count.

• We	first	need	to	ask	what	features we	want	to	
count.



What	Features	could	we	count?



What	Features	could	we	count?

• Counting	at	the	level	of	genes	(reads	mapped	
to	gene	regardless	of	transcript).

• Counting	at	the	level	of	transcript.
• Counting	at	the	level	of	exons.
• Counting	at	the	level	of	kmers within	one	of	
the	above

• Counting	at	the	level	of	nucleotides	within	
exon/transcript/gene.



Counting

• We	are	interested	in	transcript	abundance.
• But	we	need	to	take	into	account	a	number	of	
things.



Counting

• We	are	interested	in	transcript	abundance.
• But	we	need	to	take	into	account	a	number	of	
things.

• How	many	reads	in	the	sample.
• Length	of	transcripts
• GC	content	and	sequencing	bias	(influencing	
counts	of	transcripts	within	a	sample).



Seemingly	sensible	Counting	(but	
ultimately	not	so	useful).

• RPKM	(reads	aligned	per	kilobase of	exon per	
million	reads	mapped)	– Mortazavi et	al	2008

• FPKM	(fragments	per	kilobase of	exon per	
million	fragments	mapped).	Same	idea	for	
paired	end	sequencing.

• TPM,	TMM…	etc…



Take	home	message	(from	me):
Actual	counts	should	be	used	as	input	
for	differential	expression	analysis,	not	

(pre)scaled measures.



BUT:	Not	everyone	agrees	with	this	
approach	though.	Nor	with	my	
arguments	about	counting.

Lior Patcher’s blog	is	a	good	place	to	
watch	the	debate.	
Also	check	out	some	comments	in	the	
vignette	and	paper	on	limma/voom.



RPKM



Problems	with	RPKM

• RPKM	is	not	a	consistent	measure	of	
expression	abundance	(or	relative	molar	
concentration).

• See
– http://blog.nextgenetics.net/?e=51
– Wagner	et	al	2012	Measurement	of	mRNA	abundance	using	RNA-seq data:	RPKM	measure	is	

inconsistent	among	samples.	Theory	Biosci



How	about	Transcripts	per	million	
(TPM)

While	TPM	is	in	general	more	(statistically)	consistent,	it	is	still	generally	not	appropriate.



Normalization	(for	DE)	can	be	much	
more	complicated	in	practice

• Why	might	scaling	by	total	number	of	reads	
(sequencing	depth)	be	a	misleading	quantity	
to	scale	by?



Normalization	(for	DE)	can	be	much	
more	complicated	in	practice

• Scaling	by	total	mapped	reads	(sequencing	
depth)	can	be	substantially	influenced	by	the	
small	proportion	of	highly	expressed	genes.

(What	might	happen?)

• A	number	of	alternatives	have	been	proposed	
and	used	(i.e.	using	quantile normalization,	
etc..)

Bullard,	J.	H.,	Purdom,	E.,	Hansen,	K.	D.,	&	Dudoit,	S.	(2010).	Evaluation	of	statistical	methods	for	normalization	and	
differential	expression	in	mRNA-Seq experiments.	BMC	Bioinformatics,	11,	94.	doi:10.1186/1471-2105-11-94



Counting	(and	normalizing)	in	practice

• In	practice,	we	do	not	want	to	“pre-scale”	our	
data	as	is	done	in	F/R-PKM	or	TPM.

• Instead	we	are	far	better	off	using	a	model	
based	approach	for	normalizing	for	read-
length	or	library	size	in	the	data	modeling	per	
se.	

• This	is	far	more	flexible.



Take	home	message:
Actual	counts	should	be	used	as	input	
for	differential	expression	analysis,	not	

(pre)scaled measures.

The	issue	is	that	getting	unambiguous	
counts	is	hard	(Rob).



Differential	Expression	analysis.	A	
Primer.

• I	am	assuming	that	we	have	already	decided	
on	an	appropriate	method	to	count	and	
convert	mapped	reads	to	discrete	values…

• There	is	a	bit	we	need	to	know	to	help	us	
understand	what	to	do	next.



A	bit	of	background	on	probability.
• Fundamentally	our	observed	measure	of	expression	
are	the	counts	of	reads.	

• Depending	upon	the	data	modeling	framework	we	
wish	to	use,	we	need	to	account	for	this,	as	these	are	
not	necessarily	approximated	well	by	normal	
(Gaussian)	distributions	that	are	used	for	“standard”	
linear	models	like	t-tests,	ANOVA,	regression.

• This	is	not	a	problem	at	all,	as	it	is	easy	to	model	data	
coming	from	other	distributions,	and	is	widely	available	
in	stats	packages	and	programming	languages	alike.



Probability	Density	vs.	Mass	function	

Probability	Mass	function	for	a	discrete	
variable.

Probability	Density	function	for	a	
continuous	variable.



Probability	Mass	function	(For	
discrete	distributions,	like	read	

counts)	

P(13|	Poisson	(l=10))	=0.073

Height	represents	the	
probability	at	that	point	
(integer).

“Area”	of	the	box	has	no	
particular	meaning.

P(integer)	≥	0	
P(non-integers)	=	0.



Probability	Density	function	

Height	at	x=	13	is	0.0799
This	is	not	the	probability	at	x=13,	but	the	
density.	
i.e.	f(13)	=	0.0799,	where	f(x)	is	the	normal	
distribution.

P(x=13|	N(mean=10,sd=3.3))	=	0
WHY?



Probability	Density	function	

We	can	define	the	probability	in	the	
interval
10	≤	x	≤	15

P(10	≤	x	≤	15|	N(10,3.3))	=0.435	



Clarifications	on	continuous	distributions.

AREA	UNDER	CURVE	OF	PDF	=1

(The	integral	of	the	normal)



Bolker 2007	CH4	page	137



The	multitude	of	probability	
distributions	allow	us	to	to	choose	

those	that	match	our	data	or	
theoretical	expectations	in	terms	of	

shape,	location,	scale.



Fitting	a	distribution	is	an	art	and	science	of	
utmost	importance	in	probability	modeling.		
The	idea	is	you	want	a	distribution	to	fit	
your	data	model	“just	right”	without	a	fit	
that	is	“overfit”	(or	underfit).		Over	fitting	
models	is	sometimes	a	problem	in	modern	
data	mining	methods	because	the	models	
fit	can	be	too	specific	to	a	particular	data	
set	to	be	of	broader	use.

Seefeld	2007



So	why	do	we	use	them?	It’s	all	about	
shape	and	scale!

• Because	they	provide	a	usable	framework	for	
framing	our	questions,	and	allowing	for	
parametric	methods;	i.e	likelihood	and	
Bayesian.

• Even	if	we	do	not	know	its	actual	distribution,	
it	is	clear	frequency	data	is	generally	going	to	
be	better	fit	by	a	binomial	than	a	normal	
distribution.	Why?



Why	will	it	be	a	better	fit?

• The	binomial	is	bounded by	zero	and	1
• Other	distributions	(gamma,	poisson,	etc)	
have	a	lower	boundary	at	zero.

• This	provides	a	convenient	framework	for	the	
relationship	between	means	and	variance	as	
one	approaches	the	boundary	condition.



Some	discrete	distributions
(leading	up	to	why	we	may	want	to	

use	the	negative	binomial)

Binomial
Poisson

Negative-binomial



Random	variables

• This	is	what	we	want	to	know	the	probability	
distribution	of.

• I.e.	P(x|some	distribution)

I	will	use	“x”	to	be	the	random	variable	in	each	
case.



Binomial
Let’s	say	you	set	up	a	series	of	enclosures.	Within	each	enclosure	you	place	25	
flies,	and	a	pre-determined	set	of	predators.
You	want	to	know	what	the	distribution	(across	enclosures)	of	flies	getting	
eaten	is,	based	on	a	pre-determined	probability	of	success	for	a	given	predator	
species.

You	can	set	this	up	as	a	binomial	problem.

N	(	R	calls	this	size)	=	25	(the	total	#	of	individuals	or	“trials”	for	predation)	in	the	
enclosure
p	=	probability	of	a	successful	predation	“trial”	(the	coin	toss)
x	=	#	trials	of	successful	predation.	This	is	what	we	usually	want	for	the	probability	
distribution.



Binomial

You	can	think	of	this	in	two	
ways.
A)	A	normalizing	constant	so	
that	probabilities	sum	to	1.
B)	#	of	different	combinations	to	
allow	for	x	“successful”	
predation	events	out	of	N	total.

You	will	often	see	x=k		and	hear	“	N	choose	k”



Example

• If	predator	species	1	had	a	per	“trial”	
probability	of	successfully	eating	a	prey	
item	of	0.2,	what	would	be	the	probability	
of	exactly	10	flies	(out	of	the	25)	being	
eaten	in	a	single	enclosure.

P(x=10|	bi(N=25,p=0.2))	=	0.0118

Not	so	high.	We	can	look	at	the	expected	probability	distribution	for	different	values	of	
x.



This	would	be	the	expected	distribution	
if	we	set	up	many	replicate	enclosures	
with	25	flies	and	this	predator.



Predator	species	2	is	much	
hungrier….



Let’s	say	we	had	100	flies	per	
enclosure,	and	predator	species	3	was	

really	ineffective,	p=0.01

While	there	may	be	a	theoretical	limit	to	the	number	of	
flies	that	can	be	eaten,	practically	speaking	it	is	unlimited	
since	the	predation	probability	is	so	low.

This	is	a	lot	like	the	situation	we	have	with	RNA-seq data.



Poisson
• When	you	have	a	discrete	random	variable	
where	the	probability	of	a	“successful”	trial	is	
very	small,	but	the	theoretical	(or	practical)	
range	is	effectively	infinite,	you	can	use	a	
poisson distribution.

• Useful	for	counting	#	of	“rare”	events,	like	new	
migrants	to	a	population/year.

• #	of	new	mutations/offspring..
• #	counts	of	sequencing	reads	(well	sort	of)…



Poisson
• It is	also	seeminingly useful	for	RNA-Seq
data.	(although	we	will	see	not	very	useful	
in	practice).



Poisson

x is	our	random	variable	(#	events/unit	sampling	effort)	– read	counts	for	a	gene	in	a	sample
l Is	the	“rate”	parameter. i.e.	Expected	number of	reads	(for	a	transcript)	per	sample
l is	the	mean	and	the	variance!!!!	

For	its	relation	to	a	binomial	when	N	is	large	and	p is	small
l=	N*p



Poisson

• Let’s	say	flies	disperse	to	colonize	a	new	patch	
at	a	very	low	rate	(	previous	estimates	suggest	
we	will	observe	one	fly	for	every	two	new	
patches	we	examine,	l=0.5).

• What	is	the	probability	of	observing	2	flies	on	
a	new	patch	of	land?

P(x=2|	poisson(l=0.5))	=	0.076



Probability	of	observing	x	number	of	
flies	on	a	patch	given	lambda=0.5



What	happens	as	lambda	increases?
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Poisson	mean	and	variance

• When	lambda	is	small	for	your	random	
variable,	you	will	often	find	that	your	data	is	
“over-dispersed”.

• That	is	there	is	more	variation	that	expected	
under	Poisson	(lambda).

• Similarly	when	lambda	gets	large,	you	will	
often	find	that	there	is	less	variation	than	
expected	under	Poisson(lambda).



Anders	and	Huber	2010	Genome	Biology



Why	poisson might	not	model	
sequence	reads	well

• Most	RNA-Seq data	(and	most	count	data	in	
biology)	is	not	modeled	well	by	poisson
because	the	relationships	between	means	and	
variances	tend	to	be	far	more	complicated	
among	(and	within)	biological	replicates.

• It	has	been	argued	(Mortzavi et	al	2008)	that	
technical	variation	in	RNA-Seq is	captured	by	
Poisson.	I	have	my	doubts	even	on	this.



Quasi-poisson

• Since	over-dispersion	is	such	a	common	issue,	a	
number	of	approaches	have	been	developed	to	
account	for	it	with	count	data.

• One	is	to	use	a	quasi-poisson.
• Instead	of	variance(x)	=	λ,	it	is

• Variance	(x)	=λθ
• Where	θ is	the	(multiplicative)	over-dispersion	
parameter.	



How	about	a	normal	distribution?

• Despite	working	with	discrete	count	data,	
several	authors	use	normal	distributions.	
Several	reasons.



How	about	a	normal	distribution?
• Despite	working	with	discrete	count	data,	several	authors	use	

normal	distributions.	Several	reasons:

1. When	the	mean	number	of	counts	is	far	enough	away	from	zero,	
often	the	normal	distribution	does	a	good	job	of	fitting	the	data	
(and	capturing	mean	&	variance	relationship).	For	low	mean	
counts	a	variance	stabilization	can	aid	modeling	(the	approach	
used	in	limma/voom).

2. Our	response	variable	(counts	of	features)	are	not	measured	
without	error,	and	therefore	are	not	true	measures.	When	
estimating	effects	in	our	model	we	account	for	this	uncertainty	
and	assuming	a	normal	distribution	enables	additional	flexibility.	



Negative	binomial

• In	biology	the	Neg.	Binomial	is	mostly	used	
like	a	poisson,	but	when	you	need	more	
dispersion	of	x (it	needs	to	be	spread	out	
more).

• The	negative	binomial is	a	Poisson	distribution	
where	lambda	itself	varies	according	to	a	
Gamma	distribution.



Negative	binomial

Expected	number	of	counts	=μ
Over-dispersion	parameter	=	k

For	our	purposes	all	we	care	about	is	that	



General(ized)	linear	models

• For	response	variables	that	are	continuous,	
you	are	likely	familiar	with	approaches	that	
come	from	the	general	linear	model.

A	standard	linear	regression	(if	x is	continuous).
If	x is	discrete	this	would	be	a	t-test/Anova.



Generalized	linear	model

• MANY	of	the	differential	expression	tools	
utilize	a	linear	model	framework.

• Thus	it	is	important	to	get	familiar	with	the	
framework.

• The	class	by	Jonathan	and	Ben	(B)	is	probably	
a	great	place	to	start.	



Continuity	of	Statistical	Approaches

t-test

ANOVA

Number	of
Levels:

Mixed	Effects	Model
(random	or	both)FixedPredictors:

Regression
(continuous)

ANCOVA
(both)

General	Linear	
Model

Predictors:
(discrete)

Generalized	Linear
Model	(non-normal)Response:

(normal)

Process	Models



Generalized	linear	models
• But	what	do	you	do	when	your	response	variable	is	not	normally	distributed?

• The	framework	of	the	linear	model	can	be	extended	to	account	for	different	
distributions	fairly	easily	(one	major	class	of	these	is	the	generalized	linear	
models).



Continuity	of	Statistical	Approaches

t-test

ANOVA

Number	of
Levels:

Mixed	Effects	Model
(random	or	both)FixedPredictors:

Regression
(continuous)

ANCOVA
(both)

General	Linear	
Model

Predictors:
(discrete)

Generalized	Linear
Model	(non-normal)Response:

(normal)

Process	Models



Generalized Linear	Models	
(GLiM)

• In	many	cases	a	general	linear	model is	not	appropriate	because	
values	are	bounded
– e.g.	counts	>	0,	proportions	between	0	and	1

• A	generalization	of	linear	models	to	include	any	distribution	of	errors	
from	the	exponential	family	of	distributions

• Normal,	Poisson,	binomial,	multinomial,	exponential,	gamma,	NOT	negative	
binomial

• General	Linear	Model	is	just	a	special	case	of	GLiM	in	which	the	errors	
are	normally	distributed

• Example,	logistic	regression
• We	will	use	likelihood	for	parameter	estimation	and	inference



Generalizations	of	GLM

• Instead	of	a	simple	linear	model:
Y	=	b0 +	b1x1+	b2x2 +	e

– Assume	that	e’s	are	independent,	normally	distributed	with	mean	
0	and	constant	variance	s2

– Can	solve	for	b’s	by	minimizing	squared	e’s

• GLiM	considers	some	adjustment	to	the	data	to	linearize	Y	
- a	link function

Y	=	g(	b0 +	b1x1+	b2x2 +	e)
or f(Y)	=	b0 +	b1x1+	b2x2 +	e
– For	example	for	count	data	which	are	always	positive

f(Y)	=	log(Y) log	link



What	is	a	link	function?

• The	link	function	is	a	way	of	transforming	the	
observed	response	variable	(LHS).	

• Goals
• 1)	linearize	observed	response
• 2)	Alter	the	boundary	conditions	of	the	data.
• 3)	To	allow	for	an	additive	model	in	the	
covariates	(RHS)



Poisson	Family

• Data	are	counts	of	something	(i.e.	0,	1,	2,	3,	4…)
• Number	of	occurrences	of	an	event	over	a	fixed	period	of	time	or	space
• Examples…

• If	the	mean	value	is	high	then	counts	can	be	log-normal	or	normally	distributed
• When	mean	value	is	low	then	there	starts	to	be	lots	of	zeros	and	variance	depends	on	

the	mean
• If	upper	end	is	also	bounded	then	binomial	would	be	better

• Default	link	is	the	log link,	variance	function	=	µ
– i.e.,	family	=	poisson	(link	=	“log”,	variance	=	“mu”)
– Other	option	might	be	the	sqrt link



Poisson	and	negative	binomial	Family

Essentially	it	means	you	can	log	transform	the	sequence	counts	and	use	a	
poisson,	quasi-poisson or	negative	binomial	to	fit	it	
(most	links	are	more	complicated,	this	is	nice	and	simple).

i.e.	counts	are	modeled	as	



Methods	using	nb glm
• edgeR (but	it	is	not	default,	so	beware!)
• DESeq/DESeq2	(maybe	DEXseq as	well?)
• BaySeq
• Limma (voom – kind	of	sort	of…).

• However	these	all	model	the	variance	quite	
differently	(how	they	borrow	information	across	
genes	to	estimate	mean-variance	relationships).

See	Yu,	Huber	&	Vitek 2013	(Bioinformatics)	for	
discussion	of	this	issue.



Methods	using	poisson and	quasi-
poisson

• tspm (two	stage	poisson model)
– Fits	models	with	poisson first.	If	over-dispersed	
then	uses	a	quasi-poisson.

– Thus	there	are	essentially	two	groups	of	genes.



Why	this	is	useful
• Since	we	can	fit	these	as	a	generalized	linear	
model,	we	can	fit	arbitrarily	complex	designs	(if	
we	have	sufficient	sample	sizes	to	estimate	all	the	
parameters).

• We	can	incorporate	all	aspects	of	read	length,	
library	size,	lane,	flow	cell	in	addition	to	all	of	the	
important	biological	predictors	(your	treatments).

• NO	t-tests	for	you!!!



Estimating	over-dispersion	(variance)
(or	why	programs	seemingly	doing	the	

same	thing	give	different	results)



Variances	require	lots	of	data	to	
estimate	well	(not	just	for	count	data)
• It	turns	out	that	to	estimate	variances,	you	
need	a	lot	more	replication	than	you	do	for	
means.

• However	most	RNA-Seq experiments	still	have	
small	numbers	of	biological	replicates.

• So	how	to	go	about	estimating	variances?



IF	sample	sizes	are	large	(within	and	
between	treatments).

• Most	methods	do	well	(based	on	NB,	quasi-P	
or	non-parametric	approaches).

• They	can	model	individual	level	variances	(and	
potentially	can	use	resampling	approaches	to	
avoid	having	to	make	parametric	
assumptions).



But	if	sample	sizes	(in	terms	of	
biological	replication)	is	small.

• Then	we	have	a	problem.
• This	is	where	the	software	really	tends	to	differ,	
as	they	allmake	(different)	assumptions	about	
the	uncertainty	in	counts,	mean-variance	
relationships,	and	how	best	to	model	such	
effects.

• In	particular	edgeR and	DEseq use	some	methods	
to	borrow	information	across	genes	(and	have	
options	to	change	this	process).

• This	can	dramatically	change	the	results.
Anders,	S.,	&	Huber,	W.	(2010).	Differential	expression	analysis	for	
sequence	count	data.	Genome	Biology,	11(10),	R106.	doi:10.1186/gb-
2010-11-10-r106

Anders	et	al	(2013).	Count-based	differential	expression	
analysis	of	RNA	sequencing	data	using	R	and	
Bioconductor.	Nature	Protocols,	8(9),	1765–1786



Anders	and	Huber	2010



Yu	et	al		(2013).	Shrinkage	estimation	of	dispersion	in	Negative	Binomial	models	for	RNA-seq experiments	with	small	sample	size.	Bioinformatics,	29(10),	
1275–1282.	



Anders	and	Huber	2010



Let’s	think	about	this.

Love,	Huber	&	Anders	2014	BioRXiV doi:	10.1101/002832	



We	can	also	“shrink”	estimates	based	
on	over-dispersion….	



Take	home

• With	small	sample	sizes,	the	methods	use	
different	approaches	to	get	gene-wise	over-
dispersion	(based	on	all	data).

• EdgeR is	more	powerful	(more	significant	hits)	
than	DESeq generally.	But	much	more	
susceptible	to	false	positives	due	to	outliers.

• DESeq2	“should”	be	somewhere	in	the	
middle.





Biological	replication	gives	far	more	statistical	
power	than	increased	sequencing	depth	within	

a	biological	sample!!!!

• Sequencing	(and	library	prep)	costs	are	still	sufficiently	
expensive	that	most	experiments	use	small	numbers	of	
biological	replicates.

• Given	the	additional	costs	of	library	costs	
(~225$/sample	at	our	facility),	many	folks	go	for	
increased	depth	instead	of	more	samples.

• For	a	given	level	of	sequencing	depth	(total)	for	a	
treatment,	it	is	far	better	to	go	for	more	biological	
replicates,	each	at	lower	sequencing	depth	(rather	than	
fewer	replicated	at	higher	sequencing	depth).



Biological	replication	gives	far	more	statistical	power	
than	increased	sequencing	depth	within	a	biological	

sample!!!!

Robles	et	al.	2012



How	do	the	methods	compare	in	
simulation?

Kvam et	al.	2012



How	do	the	methods	compare	in	
simulation?

Kvam et	al.	2012



How	do	the	methods	compare	for	real	
data?

Kvam et	al.	2012



How	do	the	methods	compare	in	a	different	set	
of	simulations?

Soneson 2012

Will	explain	
ROC	(receiver	
operator	curves)	
and	the	area	
under	curves	on	
board.
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Why	do	we	care	about	multiple	
comparisons?



How	can	we	deal	with	multiple	
comparisons


