Functional Annotation

Functional vs Structural Annotation

• Structure:

- Location of exons/introns/UTRs
- Identification of genomic elements by position

• Function:

- What does it do?
- Biological information

Outline

- Lots of tools!
- Dammit:
 - BLAST to Uniref90
 - HMMER search of Pfam-A
 - Infernal search of Rfam
- InterProScan
- Gene Ontology

dammit!

- Wrapper for:
 - 1. Transdecoder translate to amino acids
 - 2. BLAST to OrthoDB eukaryotic ortholog database
 - BLAST to BUSCO Benchmarking Universal Single-Copy Orthologs
 - 3. BLAST to Uniref90 *
 - 4. HMMer search of Pfam-A *
 - 5. Infernal search of Rfam *

Uniref90

- Clustered sets of sequences from the giant database of all known proteins (UniProt Knowledgebase)
- <u>UniRef100</u> collapse identical sequences and sub-fragments with 11 or more residues from any organism into a single entry
- UniRef90 use CD-HIT to collapse sequences that have at least 90% sequence identity to and 80% overlap with the longest sequence

83,050,155

43,405,259

SwissProt

- A curated set of the UniRef database
- 551,705 entries (July 6th, 2016)
- Manual annotation:
 - Identification of homologs w/ BLAST
 - Protein domain id and protein family classification
 - Association with relevant literature
 - Extensive cataloging of information from laboratory experiments
 - Gene Ontology term assignment

Pfam and HMMER

Pfam + HMMER

There is more to the world than just BLAST (ie traditional sequence alignment)

- The second most popular algorithm is HMMER.
- HMM = Hidden Markov Model
- But to understand that we need to talk about...

Markov Chain

0.7

0.4

- A <u>Markov chain</u> is a random process that undergoes transitions from one state to another on a state space
- Has the property of "memorylessness"
- the probability distribution of the next state depends only on the current state and not on the sequence of events that preceded it
- Called the Markov property
- A Markov chain is a type of Markov Model that is fully observable – we know all the states and probabilities for moving between states

Markov Chain

0.9

How is it used statistically?

Possible to calculate:

- the long-term fraction of weeks during which the market is in each state (62.5% of weeks will be in a bull market, 31.25% of weeks will be in a bear market and 6.25% of weeks will be stagnant)
- the average number of weeks it will take to go from a stagnant to a bull market

Hidden Markov Model

- The markov chain is only one type of markov model. Another is the <u>hidden</u> <u>Markov model</u>.
- Similar to a Markov chain
- Hidden (unobservable) states
- Example

Hidden Markov Model

 Bob has a friend Susan. Everyday he posts on Facebook weather he is walking, shopping or cleaning. Susan is a mathematician and recognizes this as an HMM.

What does this have to do with biology?

- Allow you to incorporate heterogenous types of information for a problem
- Allow you to add new information more easily.
- Gene finding. We should account for:
 - splice-site consensus
 - codon bias
 - exon/ intron length preferences
 - open reading frame analysis

How should the parameters be set?

How do we weight them?

How to score?

How confident that an answer is correct?

 HMMs provide a conceptual toolkit for building complex models.

What does this have to do with biology?

Problems often addressed with HMMs:

- Finding a gene
- Searching for a sequence profile
- Multiple sequence alignment
- Regulatory site identification

Outside of biology, best known for temporal pattern recognition:

- Speech
- Handwriting
- Gesture

We have a sequence.

Definitely Exon

Definitely Intron

CTTAGATCGAAATTCGATTTTCGTAAAACGTTCCCCGG

????????

Where is the splice site?

- Lets say we know some information about splicing that will be helpful
- exons have a uniform base composition on average (25% each base), while introns are A/T rich (say, 40% each for A/T, 10% each for C/G),
- the 5'SS consensus nucleotide is almost always a G (say, 95% G and 5% A).
- We can make an HMM.
- We have hidden states: each base is an Exon(E), an Intron(I) or a 5'SS(S)
- We need to find the most likely state that produced the observed sequence

Sequence: CTTCATGTGAAAGCAGACGTAAGTCA

Lets test different underlying states to see which is the most likely.

- Start with a multiple sequence alignment
- Feed into hmmbuild
 - Generate an hmm profile
- Calibrate the model with hmmcalibrate
 - Increase sensitivity of searching
- Search for new homologs that belong to your group with hmmsearch

- Why not use BLAST?
- Has much more power in the case of many sequences from the same family – can build a more accurate model of that family by using information about:
 - how conserved each column of the alignment is
 - which residues are most likely at each position
- With a well described protein family, can detect much more remote evolutionary relationships than BLAST.
- Used to be much slower, with new HMMER3 implementation, now is almost as fast as BLAST
- What sorts of databases can we search with HMMER?

- Within a database of protein sequences, many are members of existing protein families and have similar functions. How to organize this information?
- Need to identify protein clusters and to produce multiple sequence alignments.
- The Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs).
- Originally published in 1997
- Pfam-A = manually curated family data
- Pfam-B = computationally generated family data

Currently has 16,306 families (version 30)

 Families are grouped into "clans" - related by similarity of sequence, structure or profile-HMM

 Family information includes gene architecture, structure, sequences from hundreds to thousands of species and interactions.

- HMMER is used by Pfam for two purposes:
 - To construct Pfam clusters
 - To detect matches from a given sequence to a cluster
- The states of the Pfam HMM correlate to the multiple sequence alignment: match, delete, insert
- The matching amino acid probabilities from the HMM can be visualized as a logo

Multiple Sequence Alignment

```
OELHG.AIDEIFOOFEVTPLASASLGOVHRAVLP.T...GE.....AVVVKVORPGLDSLLNLDFELLHOTLRLAKRWLP
Y095 SYNY3/115-238
                          EELGK.PIAKLYRSFDPVPLAAASLGQVHKAQLH.T...GE.....DVVVKVQRPGLKKLFTIDLAILKKIAQYFQNHPK
Y1770 SYNY3/142-261
                           .ELGA.PISVMYKEFEEOPIAAASLGOVHRAVLH.N...GE.....KVVVKVORPGLKKLFDIDLRNLKLIAEYFOKSES
B9DGY1 ARATH/248-365
Y1919 SYNY3/127-246
                          EOLGM.KVDEAYREISAHPVAAASLGOVYRAMLF.S...GE.....EVAVKVORPNLRPRLSLDLYLMRLGAOKFGRFLP
                          EELGA.PAEEIYAELSPEPIAAASLGOVYKGKLK.T...GE.....AVAVKVORPDLVRRITLDIYIMRSLSLWARRSVK
Y005 SYNY3/161-279
                          GELGG.PVESFFSQFSQETVAAASFGQVYRGRTL.D...GA.....DVAVKVQRPDLRHAVLRDIYILRLGLGVLRKVAK
080962 ARATH/256-373
O27682 METTH/119-238
                           SELGV.PMEEVFAEFOEEPVASASIGOVHRARLR.N...GD.....AVAVKVORPGIADTVKSDIILMKYLAKLANDRVP
                          REFPO.PLGETFOEIESEPIAAGSIGOIHRAVLO.S...GE.....TVAIKVKRPGIDVIVEODSLLIKDVAELLALTEF
Y889 SYNY3/100-218
                          KNLGK.NWMTHYSEFDRKPMAAASIGOVHRARLASN...HM.....EVVVKVOYPGVMSSIDSDLNNLAYLLKASRILPK
ABCI SCHPO/284-401
                          KELGA.NWKTKFSKFDKIPMAAASIGOVHAAELP.S...GO....RVVVKIOYPGVKESIDSDLNSLLMLLTASSLLPK
COQ8 YEAST/176-292
                           .ELGS.NWOSKLTSFDYEPLAAASIGOVHRAVTK.D...GL....EVAMKIOYPGVANSIESDIENVRRLLNYTNLIPK
Q9SBB2 ARATH/284-398
                           DAFGD.DWREKFEHFDDKPFACASIGOVHKAVLK.D...GR.....NVAVKVOYPGVAEGIDSDIDNLVSVLSVGGIFPK
COO8 CAEEL/417-533
Q9VYI6 DROME/336-452
                           TOLGA.DWRORLKSFEDKPFAAASIGOVHRATLS.D...GM.....DVAIKIOYPGVAOSIESDIDNLVGMLKVWDVFPO
                           .AFGR.KLSEIFEEFDEAPVASGSIAQVHRASLK.FQYAGQKVKSSEVAVKVRHPCVEETMKRDFVIINFVAR.LTTFIP
Q3ECK9 ARATH/268-392
                           .NLGO.NLTEIYLSFDEEPIAAASIAQVHHAVLK.N...HQ....EVAVKVQYPGLKQNMMLDTMIMSFLSKSVAKIFP
F4ID59 ARATH/156-271
                           SELNA.KVGDLFSEFSEKPVGAASLAOVHKAKLKES...GE.....TVAVKVOHKRVYKNSRTDVNTMEFLVKVADAVFP
O17735 CAEEL/142-259
ADCK1 HUMAN/143-259
                           EDLGK.EIHDLFOSFDDTPLGTASLAOVHKAVLH.D...GR.....TVAVKVOHPKVRAOSSKDILLMEVLVLAVKOLFP
                           QDLHC.NPEEIFDSFEREPLGTASLAQVHKARLK.T...GE.....LVAVKVQHPYVKGNSRVDMKTMELAVNVLARIFP
Q9W133 DROME/137-253
MCP2 YEAST/166-289
                          EDLGT.SIEDMFLEFNKTPIGVASLAOVHVAKLKNSDGKGS.....SVAVKCOHPSLKEFIPLDVMLTRTVFELLDVFFP
                          VDTGK.GLDETFDEFDPIALGVASLAQVHKARLKDS...DV....WVAVKVQHPSVSLNSPLDLSMTRWVFKAIKTFFP
MCP2L SCHPO/168-286
                          KDFGO.LPEEIYOEFDYOPVAAASLAOVFKARLP.S...GE.....OVAVKVOYNDLOKRFISDLGTIIFLODIVEFFFK
Q9VTG5 DROME/162-278
                          KEVGE.MPDQVFAEFDPVPIASASLAQVHVARTH.D...GK.....KVAVKVQHAHMTDTAAADTAAVGVLVNTLHRIFP
Y2090 ARATH/147-268
                          EOYGR.PVEEVFASIEKRAAASASIAOVHRAVLP.S...GE.....KVAVKIOKPDVAKOMSWDLLVYKYMMYVYDKWIF
YF9E SCHPO/167-287
                          EELGD.EPARLFASFEEEPFASASIAQVHYATLR.S...GE.....EVVVKIQRPGIRRRVAADLQILKRFAQTVELAKL
Y647 MYCTU/150-271
                           HSTNTCNVSLPFLHFDNNPIAAASISQVHKAQLI.T...GG.....YVALKILRPDIRKKYNRDIKLLYFFAKIISKFSK
Q9ZCP5 RICPR/34-153
                           .ALGC.PIEKSFRFFNEIPIGSASIAOVYOAETL.D...GV....TVAVKVLRPGIKLAFRKATETYEWAATKIESLND
H2VFS0 ZYMMO/111-228
                           .SLER.PLKDVFASLGP.PVAAASIAQVHRGEVVRD...GIR...KAVAVKVLRPNVASRFRRDLSDFFYVAHKAETYSA
Q89WD1 BRADU/112-231
                          EKES..PPDFTFYEWYKEPIASASIATVYKGKRKTD...NS.....DVILKRVRPEVKORIMEDLPLFIIVLDIAKFFGV
Y445 PBCV1/90-208
                           ...GL.PVEAWFDDFEIKPLASASIAQVHTARLKSN...GK....EVVIKVIRPDILPVIKADLKLIYRLARWVPRLLP
UBIB SHIDS/115-232
```

Becomes a Profile

Represented as a logo

- Take all 16,306 profiles
- Use hmmsearch to compare your sequences to these families
- Uses all the logo information!

Example:

Search green ash protein

ALCLIMLAHSGGGAAISPSVNTTRTPNLPTINDSKKQIENSTTTPPPTTQDQSYSCSVCNKAFASYQALGGHKASHRKNATATASDDG NHSTSTSTTTAAASTASNVSALNPRGRLHECSICHKSFPTGQALGGHKRRHYEGIIGGGSSKSSVTSSDGGASSHAPRDFDLNLPATP EFQLELTVDCVKKSQFVGDQEVESPMPFKKPRI.PI.FGERF

Results

Family	Description						
<u>zf-C2H2 6</u>	C2H2-type zinc finger						
#MATCH #PP	he <mark>CdeCsksFpSlqaLggHkksHrk</mark> + C++C+k F S+qaLggHk+sHrk 78************************************						

Entry type Clan	Envelope		Alignment		НММ		нмм	Bit	E-value	
	Ciaii	Start	End	Start	End	From	То	length	score	L-value
Domain	CL0361	53	79	54	78	2	26	27	45.9	3.2e-12

Infernal + Rfam

- Infernal ("INFERence of RNA ALignment")
- Tool for searching for RNA structure and sequence similarities
- Uses information about <u>sequence AND structure</u>
- Also uses HMM (generates covariance model instead of a profile)
- Start with:
 - Multiple sequence alignment
 - Special annotation of bases that are paired to create the secondary structure

Example snoRNA

```
AAAGCAGGUUGCAAUUACAGUGCUUCAUUUU.GUG.....GAAGUACUGCCAUUAUCCUGCUGAAAGAA.AAGC.CGUGUU.AAUCA.UUUUUGAUUUUGCCUU.UA
AAAGCAGGUAGCAAUUACAGUGCUUCAUUUU.GUG.....GGAGUACUGCCAUUAUCCUGCUGAAAGAA.AAGC.CAUGUU.GGUUG.UUUCUGAUUUUUGCUU.U-
    ----agcaauua<mark>cagugcuuc</mark>auuuu.gug.....<mark>ggaguacug</mark>ccauuauccugcugaaagaa.aagc.cauguu.gguug.uuuc<mark>ugauuuuugcuu</mark>.u-
AG<mark>AGCAGG</mark>UUGCAAUUA<mark>CAGUGCUUC</mark>AUUUU.GUG.....<mark>GAAGUACUG</mark>CCAUUAU<mark>CCUGCU</mark>GAAAGAA.AAG<mark>C.UAUGUU.GAUCA.UUUUUGAUUUUGCCUU</mark>.C-
AAAGCAGGUUGCAAUUACAGUGCUUCAUUUU.GUG.....GAAGUACUGCCAUUAUCCUGCUGAAAGAA.AAGC.UGUGUU.GAUCG.UUAUUGAUUUUGCCCA.UA
AAAGCAGGUUGCAAUUACAGUGCUUCGUUUU.GUG.....GAAGUACUGACAUUAUCCUGCUGAAAGAA.AAAC.AGUGUU.GAUCA.UUUUUGAUUUUGCCUC.UC
AAAGCAGGUUGCAAUUACAGUGCUUUCUUUU.GUG.....GAAGUAUUGACAUUAUCCUGCUGAAAGAA.AAUC.UGUGUU.GAUCUUUUUUGAUUUUGCCAU.UU
UAC<mark>GCAGG</mark>UUGUAAUUA<mark>CAGUGCUUU</mark>GUUUU.GGG.....<mark>GAAGUACUG</mark>CUGUUAU<mark>CCUGC</mark>UGAAAGAC.AAGC.UGUGUU.AGUCA.UUUUUGAUUUUGCCUU.UA.
AAAGCAAGCUGCAAUUACAGUGCUUCAUUUU.GUGaaauacUAAAUACUGCCAUUAUCCUGAAAGAA.AAGC.UGUGUU.AAUGA.UUUUUGAUUUUGUCUU.UG
AAAGCAGGCUGCAAUUACAGUUCAGUUU.GUG.....GAAGUACUGCCAUUAUCCUGCUGAGAAAAAGC.CAUGUU.GGCCG.GCUCUGGUUUUGCCUC.U-
UAAGCAGGUUGCAAUUACAGUGCUUCAUUUU.GUG.....GAAGUACUGACAUUAUCCUGCUGAAAGAA.AAUCUUGUGUG.GAUCA.UUUUUGAUUUUGCCUU.UG
AAAGCAGGUUGCAAUUACAGUACUUCAUUCU.GUG.....GAAGUAUUGCCAUUAUCCUGCUGAAAGAA.AAGC.CGUGUUUAAUCA.UUUCCGGGUUUGCCUG.UA.
AAAGCAGGUUGCAAUUACAGUGCUUCAUUUU.GUG.....GAAGUACUGACAUUACCCUGCUGAAAGAA.AAUG.UGUGUC.GAUCA.UUUUUGAUUUUGCCUU.UA
AAAGCAAGCUGGAAUUGCAGUGCUUCAUUUU.GUGaaauacUAAAUACCAUCAUUAUGCUGCUGAAAGAA.AAGC.UGUUUU.AAUGA.UUUUUGAUUUUGUCUU.UG
AAAGCAGGUUGCAAUUACAGUGCUUUAUUUU.GUG.....AAAGUACUGUCAUUAUCCUGCUGAAAGAA.AAGC.UGUGUU.GGUCC.UUUUUGAUUUUGCCAC.UG
```

Example snoRNA

- RNA types:
 - non-coding RNA genes
 - structured cis-regulatory elements
 - self-splicing RNAs
- Grouped into RNA families, each represented by:
 - multiple sequence alignments
 - consensus secondary structures
 - covariance models (CMs).

dammit!

- Wrapper for:
 - 1. Transdecoder translate to amino acids
 - 2. BLAST to OrthoDB eukaryotic ortholog database
 - BLAST to BUSCO Benchmarking Universal Single-Copy Orthologs
 - 3. BLAST to Uniref90 *
 - 4. HMMer search of Pfam-A *
 - 5. Infernal search of Rfam *

InterProScan

InterPro

- InterPro provides functional analysis of proteins by classifying them into families and predicting domains and important sites
- uses predictive models, known as signatures, provided by several different databases

Ontology

Ontology

- Roots in philosophy how we conceptualize and specify knowledge (Aristotle)
- Super useful to teaching things to computers
- This is a very big area of thought and utility, we're going to focus on a relatively simple example:
- Controlled Vocabulary

Example:

- Wine
 - White Wine
 - Rose Wine
 - Red Wine
 - Beaujolais
 - Red Burgundy
 - Red Zinfandel
 - Merlot

From NCBI SRA for Arabidopsis

I want sequences that relate to flower structures. I have to hand pick:

- Inflorescense
- Inflorescence
- Immature inflorescence
- Flower
- Flowers
- Pistils pollinated for 8 Hours
- 3xHA_infloresence_biological_replication1
- 3xHA_infloresence_biological_replication2
- 3xHA-VvCEB1-OX_inflorescence_biological_replication3

Plant Structure Ontology

 All these would be coded in a computer readable structure:

- **≻**Inflorescence
 - **≻**Flower
 - ➤ Gynoecium (Pistil)
 - > Androecium
 - **≻**Perianth

- Used for annotating genes
- Three sections
 - Biological Processes
 - Metabolic Functions
 - Cellular Components
- Each section is formed as graph or network of terms

Response to Stimulus

Response to Stress

Response to heat

Response to DNA damage stimulus

GO:2001022 positive regulation of response to DNA damage stimulus

GO:2001020 regulation of response to DNA damage stimulus

GO:1990248 regulation of transcription from RNA polymerase II promoter in response to DNA damage

GO:0031297 replication fork processing

GO:0042770 signal transduction in response to DNA damage

GO:0043247 telomere maintenance in response to DNA damage

Uses of Gene Ontology

- Finding members of the same biological process or pathway
- Finding high level patterns of metabolic or biological activties
- Looking for statistical enrichment of GO terms
 - From the control to the treatment, the occurrence of lignan production related genes increases
- Tools:
 - GO home page
 - BinGO cytoscape plugin

Example

